Analysis walkthrough for “Tuning in to non-adjacencies: Exposure to learnable patterns supports discovering otherwise difficult structures” (Zettersten, Potter & Saffran).
For details on the rationale for individual analyses, see the corresponding paper.
#Familiar X Test
p1 <- ggplot(subset(test_type_exp,testType=="familiarX"&exp=="exp1"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="familiarX"&exp=="exp1"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=16)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Non-Learnable Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Non-Learnable\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Non-Learnable Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#4DAF4A","#E41A1C"))+
scale_color_manual(values=c("#4DAF4A","#E41A1C"))+
theme(legend.position="none")+
ylab("Accuracy - Familiar X Test")+
xlab("Condition")
#Novel X
p2 <- ggplot(subset(test_type_exp,testType=="novelX"&exp=="exp1"),aes(condition,accuracy,fill=condition,color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="novelX"&exp=="exp1"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=16)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Non-Learnable Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Non-Learnable\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Non-Learnable Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#4DAF4A","#E41A1C"))+
scale_color_manual(values=c("#4DAF4A","#E41A1C"))+
theme(legend.position="none")+
ylab("Accuracy - Novel X Test")+
xlab("Condition")
plot_grid(p1,p2, labels=c("A","B"),label_size=18)
overall_exp %>%
filter(exp=="exp1") %>%
select(-c(se, accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
exp | condition | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|
exp1 | Learnable Pre-Exposure | 32 | 0.6197917 | 0.5503856 | 0.6891977 | 0.8180681 | 0.33183941 | 1.3042967 | -0.1721116 | -0.2965946 | -0.0476286 |
exp1 | Non-Learnable Pre-Exposure | 35 | 0.5293651 | 0.4935915 | 0.5651386 | 0.2026126 | -0.04537869 | 0.4506038 | -0.3028788 | -0.4757694 | -0.1299883 |
test_type_exp %>%
filter(exp=="exp1") %>%
select(-c(se, accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
exp | condition | testType | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|---|
exp1 | Learnable Pre-Exposure | familiarX | 32 | 0.6197917 | 0.5505723 | 0.6890110 | 0.7511226 | 0.32051674 | 1.1817285 | -0.24820588 | -0.4281889 | -0.06822284 |
exp1 | Learnable Pre-Exposure | novelX | 32 | 0.6197917 | 0.5436288 | 0.6959545 | 0.7517021 | 0.28191789 | 1.2214863 | -0.08924026 | -0.2107732 | 0.03229271 |
exp1 | Non-Learnable Pre-Exposure | familiarX | 35 | 0.5269841 | 0.4794718 | 0.5744965 | 0.1608595 | -0.12636554 | 0.4480845 | -0.47197810 | -0.6295813 | -0.31437490 |
exp1 | Non-Learnable Pre-Exposure | novelX | 35 | 0.5317460 | 0.4921224 | 0.5713697 | 0.1901106 | -0.04401717 | 0.4242384 | -0.11014830 | -0.3209422 | 0.10064563 |
##Correlations between Familiar X and Novel X
c <- corr.test(subset(subj_accuracy_wide, condition=="Learnable Pre-Exposure" & exp=="exp1")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Learnable Pre-Exposure" &
## exp == "exp1")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.82
## familiarX 0.82 1.00
## Sample Size
## [1] 32
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0 0
## familiarX 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.000000e+00 7.454645e-09
## familiarX 7.454645e-09 0.000000e+00
c <- corr.test(subset(subj_accuracy_wide, condition=="Non-Learnable Pre-Exposure" & exp=="exp1")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Non-Learnable Pre-Exposure" &
## exp == "exp1")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.34
## familiarX 0.34 1.00
## Sample Size
## [1] 35
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0.00 0.04
## familiarX 0.04 0.00
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.00000000 0.04366703
## familiarX 0.04366703 0.00000000
Compute correlation without outlier participant with perfect Familiar X and Novel X accuracy
#check outlier in Non-Learnable Pre-Exposure Condition
outlierTest(lm(novelX~familiarX,subset(subj_accuracy_wide,exp=="exp1"&condition=="Non-Learnable Pre-Exposure")))
## rstudent unadjusted p-value Bonferroni p
## 34 5.040898 1.7644e-05 0.00061755
#correlation without outlier
c <- corr.test(subset(subj_accuracy_wide, condition=="Non-Learnable Pre-Exposure" & exp=="exp1"&participantCode!="apg_exp1_p7")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Non-Learnable Pre-Exposure" &
## exp == "exp1" & participantCode != "apg_exp1_p7")[, c("novelX",
## "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 -0.14
## familiarX -0.14 1.00
## Sample Size
## [1] 34
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0.00 0.44
## familiarX 0.44 0.00
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.0000000 0.4434494
## familiarX 0.4434494 0.0000000
m <- lm(novelX~familiarX*condition, subset(subj_accuracy_wide,exp=="exp1"))
summary(m)
##
## Call:
## lm(formula = novelX ~ familiarX * condition, data = subset(subj_accuracy_wide,
## exp == "exp1"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.26809 -0.06266 -0.01132 0.04742 0.33776
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.05859 0.07023 0.834
## familiarX 0.90546 0.10839 8.354
## conditionNon-Learnable Pre-Exposure 0.32240 0.10511 3.067
## familiarX:conditionNon-Learnable Pre-Exposure -0.61940 0.17996 -3.442
## Pr(>|t|)
## (Intercept) 0.40727
## familiarX 8.6e-12 ***
## conditionNon-Learnable Pre-Exposure 0.00318 **
## familiarX:conditionNon-Learnable Pre-Exposure 0.00103 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1159 on 63 degrees of freedom
## Multiple R-squared: 0.5697, Adjusted R-squared: 0.5492
## F-statistic: 27.8 on 3 and 63 DF, p-value: 1.425e-11
ggplot(subset(subj_accuracy_wide,exp=="exp1"),aes(familiarX,novelX, color=condition,linetype=condition,shape=condition))+
geom_jitter(width=0.02,height=0.02,size=3)+
geom_smooth(method=lm,se =F,size=1.5)+
scale_color_manual(name="Condition",values=c("#4DAF4A","#E41A1C"))+
scale_linetype_discrete(name="Condition")+
scale_shape_discrete(name="Condition")+
ylab("Accuracy - Novel X")+
xlab("Accuracy - Familiar X")+
theme_classic(base_size=18)+
theme(legend.position=c(0.3,0.9))
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
##all data
#recode condition
d$conditionC <- ifelse(d$condition=="Learnable Pre-Exposure",0.5,
ifelse(d$condition=="Non-Learnable Pre-Exposure",-0.5,NA))
m <- glmer(isRight~conditionC+(1|participantCode)+(0+conditionC|stimulus),data=subset(d,exp=="exp1"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (0 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp1")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3187.2 3210.4 -1589.6 3179.2 2408
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8145 -1.0146 0.3718 0.9347 1.3215
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.45292 0.6730
## stimulus conditionC 0.03135 0.1771
## Number of obs: 2412, groups: participantCode, 67; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36233 0.09396 3.856 0.000115 ***
## conditionC 0.45319 0.18959 2.390 0.016831 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.070
confint(m, method="Wald")[3:4,]
## 2.5 % 97.5 %
## (Intercept) 0.17817515 0.5464922
## conditionC 0.08160272 0.8247797
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp1"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp1")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3191.2 3225.9 -1589.6 3179.2 2406
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8161 -1.0141 0.3721 0.9345 1.3206
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 4.530e-01 0.673034
## stimulus (Intercept) 5.008e-06 0.002238
## conditionC 3.157e-02 0.177674 1.00
## Number of obs: 2412, groups: participantCode, 67; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36236 0.09397 3.856 0.000115 ***
## conditionC 0.45326 0.18963 2.390 0.016836 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.071
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.17818361 0.5465339
## conditionC 0.08159645 0.8249155
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
# excluding the random effect with an estimated covariance of zero (identical results)
m <- glmer(isRight~conditionC+(1|participantCode)+(0+conditionC|stimulus),data=subset(d,exp=="exp1"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (0 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp1" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1621.4 1641.8 -806.7 1613.4 1202
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8397 -1.0270 0.5291 0.8899 1.2857
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.30588 0.5531
## stimulus conditionC 0.03155 0.1776
## Number of obs: 1206, groups: participantCode, 67; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.32844 0.09148 3.590 0.00033 ***
## conditionC 0.42159 0.18715 2.253 0.02428 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.069
confint(m, method="Wald")[3:4,]
## 2.5 % 97.5 %
## (Intercept) 0.14914321 0.5077313
## conditionC 0.05478651 0.7884028
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
#maximal model
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp1"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa")) #convergence warning
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp1" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1625.4 1656.0 -806.7 1613.4 1200
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8397 -1.0270 0.5291 0.8899 1.2857
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.30588 0.5531
## stimulus (Intercept) 0.00000 0.0000
## conditionC 0.03155 0.1776 NaN
## Number of obs: 1206, groups: participantCode, 67; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.32844 0.09148 3.590 0.00033 ***
## conditionC 0.42159 0.18715 2.253 0.02428 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.069
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.14914303 0.5077312
## conditionC 0.05478489 0.7884044
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp1"&testType=="familiarX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data:
## subset(d, exp == "exp1" & testType == "familiarX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 740.7 749.5 -368.4 736.7 574
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1056 -1.0740 0.3629 0.8553 1.1999
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.6889 0.83
## Number of obs: 576, groups: participantCode, 32
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5848 0.1761 3.321 0.000897 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.2396826 0.9299226
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp1"&testType=="familiarX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data:
## subset(d, exp == "exp1" & testType == "familiarX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 742.7 755.8 -368.4 736.7 573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1056 -1.0740 0.3629 0.8553 1.1999
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.6889 0.83
## stimulus (Intercept) 0.0000 0.00
## Number of obs: 576, groups: participantCode, 32; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5848 0.1761 3.321 0.000897 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.239681 0.9299249
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp1"&testType=="familiarX"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data:
## subset(d, exp == "exp1" & testType == "familiarX" & conditionC ==
## -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 873.8 882.7 -434.9 869.8 628
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2102 -1.0412 0.7315 0.9604 1.0828
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.08204 0.2864
## Number of obs: 630, groups: participantCode, 35
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.11052 0.09406 1.175 0.24
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) -0.07383629 0.2948815
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp1"&testType=="familiarX"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data:
## subset(d, exp == "exp1" & testType == "familiarX" & conditionC ==
## -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 875.8 889.1 -434.9 869.8 627
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2102 -1.0412 0.7315 0.9604 1.0828
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.08204 0.2864
## stimulus (Intercept) 0.00000 0.0000
## Number of obs: 630, groups: participantCode, 35; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.11052 0.09406 1.175 0.24
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) -0.07383649 0.2948815
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~conditionC+(1|participantCode)+(0+conditionC|stimulus),data=subset(d,exp=="exp1"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (0 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp1" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1618.4 1638.8 -805.2 1610.4 1202
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0476 -1.0466 0.4978 0.8995 1.2835
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.33311 0.5772
## stimulus conditionC 0.02415 0.1554
## Number of obs: 1206, groups: participantCode, 67; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.34347 0.09399 3.654 0.000258 ***
## conditionC 0.41292 0.19094 2.163 0.030574 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.076
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.15925784 0.5276890
## conditionC 0.03868726 0.7871542
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp1"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp1" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1622.4 1652.9 -805.2 1610.4 1200
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0476 -1.0466 0.4978 0.8995 1.2835
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.33311 0.5772
## stimulus (Intercept) 0.00000 0.0000
## conditionC 0.02415 0.1554 NaN
## Number of obs: 1206, groups: participantCode, 67; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.34347 0.09399 3.654 0.000258 ***
## conditionC 0.41292 0.19094 2.163 0.030574 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.076
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.1592572 0.527690
## conditionC 0.0386855 0.787156
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp1"&testType=="novelX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp1" & testType == "novelX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 727.2 740.2 -360.6 721.2 573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6207 -0.9700 0.3824 0.8683 1.3699
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.98658 0.99327
## stimulus (Intercept) 0.00439 0.06626
## Number of obs: 576, groups: participantCode, 32; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6291 0.2038 3.086 0.00203 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.2295743 1.028565
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glm(isRight~1,data=subset(d,exp=="exp1"&testType=="novelX"&conditionC==-0.5),family=binomial)
summary(m)
##
## Call:
## glm(formula = isRight ~ 1, family = binomial, data = subset(d,
## exp == "exp1" & testType == "novelX" & conditionC == -0.5))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.232 -1.232 1.124 1.124 1.124
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12716 0.07984 1.593 0.111
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 870.82 on 629 degrees of freedom
## Residual deviance: 870.82 on 629 degrees of freedom
## AIC: 872.82
##
## Number of Fisher Scoring iterations: 3
confint(m, method="Wald")
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## -0.02915486 0.28398462
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp1"&testType=="novelX"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp1" & testType == "novelX" & conditionC ==
## -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 876.8 890.2 -435.4 870.8 627
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.0656 -1.0656 0.9384 0.9384 0.9384
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0 0
## stimulus (Intercept) 0 0
## Number of obs: 630, groups: participantCode, 35; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.12716 0.07984 1.593 0.111
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## -0.02933406 0.28364441
The final model with the maximal random effects structure that still allowed the model to converge.
#recode test type
d$testTypeC <- ifelse(d$testType=="novelX",0.5,
ifelse(d$testType=="familiarX",-0.5,NA))
##all data
m <- glmer(isRight~conditionC*testTypeC+(1|participantCode)+(0+conditionC|stimulus),data=subset(d,exp=="exp1"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC * testTypeC + (1 | participantCode) + (0 +
## conditionC | stimulus)
## Data: subset(d, exp == "exp1")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3191.2 3225.9 -1589.6 3179.2 2406
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8151 -1.0158 0.3718 0.9372 1.3230
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.45292 0.6730
## stimulus conditionC 0.03123 0.1767
## Number of obs: 2412, groups: participantCode, 67; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36233 0.09396 3.856 0.000115 ***
## conditionC 0.45319 0.18958 2.390 0.016827 *
## testTypeC 0.01004 0.08636 0.116 0.907448
## conditionC:testTypeC -0.02008 0.18248 -0.110 0.912371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC tstTyC
## conditionC 0.070
## testTypeC 0.000 0.000
## cndtnC:tsTC 0.000 0.000 0.098
confint(m, method="Wald")[3:6,]
## 2.5 % 97.5 %
## (Intercept) 0.17817542 0.5464902
## conditionC 0.08161444 0.8247583
## testTypeC -0.15922356 0.1793038
## conditionC:testTypeC -0.37774439 0.3375804
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
m <- glmer(isRight~conditionC*testTypeC+(1+testTypeC|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp1"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC * testTypeC + (1 + testTypeC | participantCode) +
## (1 + conditionC | stimulus)
## Data: subset(d, exp == "exp1")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3199.2 3257.0 -1589.6 3179.2 2402
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8439 -1.0144 0.3759 0.9368 1.3191
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.4529594 0.67302
## testTypeC 0.0003477 0.01865 1.00
## stimulus (Intercept) 0.0000000 0.00000
## conditionC 0.0312275 0.17671 NaN
## Number of obs: 2412, groups: participantCode, 67; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36238 0.09396 3.857 0.000115 ***
## conditionC 0.45328 0.18959 2.391 0.016810 *
## testTypeC 0.01336 0.08894 0.150 0.880571
## conditionC:testTypeC -0.01559 0.18477 -0.084 0.932777
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC tstTyC
## conditionC 0.070
## testTypeC 0.025 0.003
## cndtnC:tsTC 0.002 0.024 0.130
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[7:10,]
## 2.5 % 97.5 %
## (Intercept) 0.17821292 0.5465478
## conditionC 0.08168851 0.8248784
## testTypeC -0.16095354 0.1876788
## conditionC:testTypeC -0.37772619 0.3465552
#recode condition
subj_overall$conditionC <- ifelse(subj_overall$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_overall$condition=="Non-Learnable Pre-Exposure",-0.5,NA))
##all data
m <- lm(dprime~conditionC,data=subset(subj_overall,exp=="exp1"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_overall,
## exp == "exp1"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5828 -0.6476 -0.2026 0.2241 3.6264
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5103 0.1306 3.908 0.000224 ***
## conditionC 0.6155 0.2611 2.357 0.021460 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.068 on 65 degrees of freedom
## Multiple R-squared: 0.07872, Adjusted R-squared: 0.06455
## F-statistic: 5.554 on 1 and 65 DF, p-value: 0.02146
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp1"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp1" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5828 -0.9621 -0.6038 0.6306 3.0109
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8181 0.2384 3.431 0.00172 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.349 on 31 degrees of freedom
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp1"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp1" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1070 -0.2739 -0.2026 0.1443 3.6264
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2026 0.1220 1.66 0.106
##
## Residual standard error: 0.7219 on 34 degrees of freedom
#recode condition
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-0.5,NA))
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp1"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp1" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6555 -0.7511 -0.1609 0.4542 3.0256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4560 0.1251 3.646 0.000531 ***
## conditionC 0.5903 0.2501 2.360 0.021305 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.023 on 65 degrees of freedom
## Multiple R-squared: 0.0789, Adjusted R-squared: 0.06473
## F-statistic: 5.568 on 1 and 65 DF, p-value: 0.02131
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp1"&testType=="familiarX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp1" & testType == "familiarX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6555 -0.7511 -0.4171 0.4855 2.4353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7511 0.2111 3.558 0.00123 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.194 on 31 degrees of freedom
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp1"&testType=="familiarX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp1" & testType == "familiarX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5212 -0.4461 -0.1609 0.3379 3.0256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1609 0.1413 1.138 0.263
##
## Residual standard error: 0.8361 on 34 degrees of freedom
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp1"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp1" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9471 -0.7517 -0.1901 0.3231 2.9963
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4709 0.1255 3.753 0.000375 ***
## conditionC 0.5616 0.2509 2.238 0.028663 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.026 on 65 degrees of freedom
## Multiple R-squared: 0.07154, Adjusted R-squared: 0.05725
## F-statistic: 5.008 on 1 and 65 DF, p-value: 0.02866
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp1"&testType=="novelX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp1" & testType == "novelX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9471 -1.0311 -0.7517 0.9832 2.4347
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7517 0.2303 3.263 0.00268 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.303 on 31 degrees of freedom
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp1"&testType=="novelX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp1" & testType == "novelX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.38555 -0.32982 0.08931 0.16317 2.99633
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1901 0.1152 1.65 0.108
##
## Residual standard error: 0.6816 on 34 degrees of freedom
#recode test type
subj_testType$testTypeC <- ifelse(subj_testType$testType=="novelX",0.5,
ifelse(subj_testType$testType=="familiarX",-0.5,NA))
m <- lm(dprime~conditionC*testTypeC,data=subset(subj_testType,exp=="exp1"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC * testTypeC, data = subset(subj_testType,
## exp == "exp1"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9471 -0.7511 -0.1609 0.3803 3.0256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.46345 0.08858 5.232 6.54e-07 ***
## conditionC 0.57593 0.17716 3.251 0.00147 **
## testTypeC 0.01492 0.17716 0.084 0.93304
## conditionC:testTypeC -0.02867 0.35433 -0.081 0.93563
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.024 on 130 degrees of freedom
## Multiple R-squared: 0.07527, Adjusted R-squared: 0.05393
## F-statistic: 3.527 on 3 and 130 DF, p-value: 0.01685
#recode condition
subj_overall$conditionC <- ifelse(subj_overall$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_overall$condition=="Non-Learnable Pre-Exposure",-0.5,NA))
##all data
m <- lm(c~conditionC,data=subset(subj_overall,exp=="exp1"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_overall, exp ==
## "exp1"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.61163 -0.18436 0.01147 0.30288 1.26614
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.23750 0.05322 -4.463 3.29e-05 ***
## conditionC 0.13077 0.10643 1.229 0.224
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4352 on 65 degrees of freedom
## Multiple R-squared: 0.0227, Adjusted R-squared: 0.007662
## F-statistic: 1.51 on 1 and 65 DF, p-value: 0.2236
m <- lm(c~1,data=subset(subj_overall,exp=="exp1"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp1" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.52696 -0.19691 -0.04105 0.18958 1.26614
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.17211 0.06104 -2.82 0.0083 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3453 on 31 degrees of freedom
m <- lm(c~1,data=subset(subj_overall,exp=="exp1"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp1" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.61163 -0.09478 0.02066 0.30288 0.73361
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.30288 0.08507 -3.56 0.00112 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5033 on 34 degrees of freedom
#recode condition
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-0.5,NA))
m <- lm(c~conditionC,data=subset(subj_testType,exp=="exp1"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_testType, exp ==
## "exp1" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.15872 -0.29250 0.04125 0.24821 1.65514
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.36009 0.05852 -6.154 5.26e-08 ***
## conditionC 0.22377 0.11703 1.912 0.0603 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4785 on 65 degrees of freedom
## Multiple R-squared: 0.05325, Adjusted R-squared: 0.03868
## F-statistic: 3.656 on 1 and 65 DF, p-value: 0.06028
m <- lm(c~1,data=subset(subj_testType,exp=="exp1"&testType=="familiarX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp1" &
## testType == "familiarX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.15872 -0.30657 -0.03701 0.24821 1.65514
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.24821 0.08825 -2.813 0.00845 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 31 degrees of freedom
m <- lm(c~1,data=subset(subj_testType,exp=="exp1"&testType=="familiarX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp1" &
## testType == "familiarX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.12124 -0.20924 0.04125 0.25951 0.90271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.47198 0.07755 -6.086 6.66e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4588 on 34 degrees of freedom
m <- lm(c~conditionC,data=subset(subj_testType,exp=="exp1"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_testType, exp ==
## "exp1" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.48307 -0.19598 -0.03536 0.18000 1.70337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09969 0.06129 -1.627 0.109
## conditionC 0.02091 0.12258 0.171 0.865
##
## Residual standard error: 0.5012 on 65 degrees of freedom
## Multiple R-squared: 0.0004474, Adjusted R-squared: -0.01493
## F-statistic: 0.02909 on 1 and 65 DF, p-value: 0.8651
m <- lm(c~1,data=subset(subj_testType,exp=="exp1"&testType=="novelX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp1" &
## testType == "novelX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.67547 -0.19598 -0.05047 0.08924 0.85395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08924 0.05959 -1.498 0.144
##
## Residual standard error: 0.3371 on 31 degrees of freedom
m <- lm(c~1,data=subset(subj_testType,exp=="exp1"&testType=="novelX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp1" &
## testType == "novelX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4831 -0.1751 0.1101 0.2528 1.7034
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1101 0.1037 -1.062 0.296
##
## Residual standard error: 0.6136 on 34 degrees of freedom
m <- lm(c~conditionC*testTypeC,data=subset(subj_testType,exp=="exp1"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC * testTypeC, data = subset(subj_testType,
## exp == "exp1"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.48307 -0.19598 0.04125 0.24821 1.70337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.22989 0.04237 -5.426 2.72e-07 ***
## conditionC 0.12234 0.08474 1.444 0.15121
## testTypeC 0.26040 0.08474 3.073 0.00258 **
## conditionC:testTypeC -0.20286 0.16947 -1.197 0.23348
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.49 on 130 degrees of freedom
## Multiple R-squared: 0.09289, Adjusted R-squared: 0.07196
## F-statistic: 4.438 on 3 and 130 DF, p-value: 0.005277
#Familiar X Test
p1 <- ggplot(subset(test_type_exp,testType=="familiarX"&exp=="exp2"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="familiarX"&exp=="exp2"),aes(y=acc), width = 0.05, height=0.02, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=12)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Non-Learnable\nPre-Exposure","No\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#E41A1C","#377EB8","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"))+
scale_color_manual(values=c("#E41A1C","#377EB8","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"))+
theme(legend.position="none")+
ylab("Accuracy - Familiar X Test")+
xlab("Condition")
#Novel X
p2 <- ggplot(subset(test_type_exp,testType=="novelX"&exp=="exp2"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="novelX"&exp=="exp2"),aes(y=acc), width = 0.05, height=0.02, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=12)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Non-Learnable\nPre-Exposure","No\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#E41A1C","#377EB8","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"))+
scale_color_manual(values=c("#E41A1C","#377EB8","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Learnable Pre-Exposure"))+
theme(legend.position="none")+
ylab("Accuracy - Novel X Test")+
xlab("Condition")
plot_grid(p1,p2, labels=c("A","B"),label_size=18)
overall_exp %>%
filter(exp=="exp2") %>%
select(-c(se,accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
exp | condition | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|
exp2 | Learnable Pre-Exposure | 83 | 0.5722301 | 0.5361125 | 0.6083476 | 0.5077750 | 0.25212450 | 0.7634256 | -0.1953715 | -0.2714524 | -0.1192905 |
exp2 | No Pre-Exposure | 81 | 0.5445816 | 0.5165071 | 0.5726561 | 0.2917437 | 0.09294647 | 0.4905409 | -0.2817981 | -0.3880251 | -0.1755711 |
exp2 | Non-Learnable Pre-Exposure | 79 | 0.5256681 | 0.5047038 | 0.5466323 | 0.1619213 | 0.03136162 | 0.2924810 | -0.3036137 | -0.3863990 | -0.2208284 |
test_type_exp %>%
filter(exp=="exp2") %>%
select(-c(se,accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
exp | condition | testType | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|---|
exp2 | Learnable Pre-Exposure | familiarX | 83 | 0.5789826 | 0.5386545 | 0.6193107 | 0.4870309 | 0.236126039 | 0.7379357 | -0.408382341 | -0.49734439 | -0.3194203 |
exp2 | Learnable Pre-Exposure | novelX | 83 | 0.5653447 | 0.5256768 | 0.6050126 | 0.4027506 | 0.159998868 | 0.6455023 | 0.003715546 | -0.10535999 | 0.1127911 |
exp2 | No Pre-Exposure | familiarX | 81 | 0.5480110 | 0.5164667 | 0.5795553 | 0.2995076 | 0.101032689 | 0.4979825 | -0.645538873 | -0.75491277 | -0.5361650 |
exp2 | No Pre-Exposure | novelX | 81 | 0.5411523 | 0.5100279 | 0.5722766 | 0.2466637 | 0.058929824 | 0.4343976 | 0.086566193 | -0.07935325 | 0.2524856 |
exp2 | Non-Learnable Pre-Exposure | familiarX | 79 | 0.5246132 | 0.4991932 | 0.5500332 | 0.1377382 | -0.017625810 | 0.2931023 | -0.573193547 | -0.67709443 | -0.4692927 |
exp2 | Non-Learnable Pre-Exposure | novelX | 79 | 0.5267229 | 0.4975832 | 0.5558626 | 0.1657024 | -0.001404172 | 0.3328089 | -0.048268953 | -0.16192481 | 0.0653869 |
##Correlations between Familiar X and Novel X
c <- corr.test(subset(subj_accuracy_wide, condition=="Learnable Pre-Exposure" & exp=="exp2")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Learnable Pre-Exposure" &
## exp == "exp2")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.63
## familiarX 0.63 1.00
## Sample Size
## [1] 83
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0 0
## familiarX 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.000000e+00 2.081808e-10
## familiarX 2.081808e-10 0.000000e+00
c <- corr.test(subset(subj_accuracy_wide, condition=="No Pre-Exposure" & exp=="exp2")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "No Pre-Exposure" &
## exp == "exp2")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.61
## familiarX 0.61 1.00
## Sample Size
## [1] 81
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0 0
## familiarX 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.00000e+00 2.12128e-09
## familiarX 2.12128e-09 0.00000e+00
c <- corr.test(subset(subj_accuracy_wide, condition=="Non-Learnable Pre-Exposure" & exp=="exp2")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Non-Learnable Pre-Exposure" &
## exp == "exp2")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.18
## familiarX 0.18 1.00
## Sample Size
## [1] 79
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0.00 0.12
## familiarX 0.12 0.00
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.0000000 0.1179566
## familiarX 0.1179566 0.0000000
#interaction
subj_accuracy_wide$conditionC <- ifelse(subj_accuracy_wide$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_accuracy_wide$condition=="Non-Learnable Pre-Exposure",-0.5,
ifelse(subj_accuracy_wide$condition=="No Pre-Exposure",0,NA)))
m <- lm(novelX~familiarX*conditionC, subset(subj_accuracy_wide,exp=="exp2"))
summary(m)
##
## Call:
## lm(formula = novelX ~ familiarX * conditionC, data = subset(subj_accuracy_wide,
## exp == "exp2"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45402 -0.07543 0.00254 0.07862 0.29724
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27859 0.03362 8.287 8.36e-15 ***
## familiarX 0.47707 0.06007 7.941 7.81e-14 ***
## conditionC -0.18070 0.08022 -2.253 0.0252 *
## familiarX:conditionC 0.35041 0.14285 2.453 0.0149 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1287 on 239 degrees of freedom
## Multiple R-squared: 0.3023, Adjusted R-squared: 0.2936
## F-statistic: 34.52 on 3 and 239 DF, p-value: < 2.2e-16
ggplot(subset(subj_accuracy_wide,exp=="exp2"),aes(familiarX,novelX, color=condition,linetype=condition,shape=condition))+
geom_jitter(width=0.02,height=0.02,size=3)+
geom_smooth(method=lm,se =F,size=1.5)+
scale_color_manual(name="Condition",values=c("#4DAF4A","#377EB8","#E41A1C"))+
scale_linetype_manual(name="Condition",values=c(1,4,2))+
scale_shape_manual(name="Condition",values=c(16,15,17))+
ylab("Accuracy - Novel X")+
xlab("Accuracy - Familiar X")+
theme_classic(base_size=18)+
theme(legend.position=c(0.3,0.9))
The final models with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
Richter single-contrast approach.
#recode condition
d$conditionC <- ifelse(d$condition=="Learnable Pre-Exposure",0.5,
ifelse(d$condition=="Non-Learnable Pre-Exposure",-0.5,
ifelse(d$condition=="No Pre-Exposure",0,NA)))
d$conditionOrthContrast2 <- ifelse(d$condition=="Learnable Pre-Exposure",-1/3,
ifelse(d$condition=="Non-Learnable Pre-Exposure",-1/3,
ifelse(d$condition=="No Pre-Exposure",2/3,NA)))
#overall analysis (Richter single-contrast apporach)
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp2"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data: subset(d, exp == "exp2")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11872.8 11894.0 -5933.4 11866.8 8743
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1798 -1.0343 0.4833 0.9310 1.3423
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2357 0.4855
## Number of obs: 8746, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.2104 0.0383 5.493 3.94e-08 ***
## conditionC 0.2165 0.0937 2.310 0.0209 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.008
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.13533554 0.2854744
## conditionC 0.03282819 0.4001370
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m <- glmer(isRight~conditionC+conditionOrthContrast2+(1|participantCode),data=subset(d,exp=="exp2"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC + conditionOrthContrast2 + (1 | participantCode)
## Data: subset(d, exp == "exp2")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11874.7 11903.0 -5933.3 11866.7 8742
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1830 -1.0320 0.4826 0.9331 1.3406
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2356 0.4854
## Number of obs: 8746, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21042 0.03830 5.494 3.92e-08 ***
## conditionC 0.21628 0.09372 2.308 0.021 *
## conditionOrthContrast2 -0.02106 0.08098 -0.260 0.795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC
## conditionC -0.008
## cndtnOrthC2 -0.002 0.008
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.13535407 0.2854761
## conditionC 0.03259514 0.3999630
## conditionOrthContrast2 -0.17978510 0.1376648
Note that these model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
Richter single-contrast approach.
#overall analysis (Richter single-contrast apporach)
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"),family=binomial,glmerControl(optimizer="bobyqa")) #convergence warning
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp2")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11878.8 11921.2 -5933.4 11866.8 8740
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1798 -1.0343 0.4833 0.9310 1.3423
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 2.357e-01 4.855e-01
## stimulus (Intercept) 7.043e-14 2.654e-07
## conditionC 5.117e-12 2.262e-06 1.00
## Number of obs: 8746, groups: participantCode, 243; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21041 0.03830 5.493 3.95e-08 ***
## conditionC 0.21648 0.09372 2.310 0.0209 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.008
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.1353330 0.2854778
## conditionC 0.0327907 0.4001751
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m=glmer(isRight~conditionC+conditionOrthContrast2+(1|participantCode)+(1+conditionC+conditionOrthContrast2|stimulus),data=subset(d,exp=="exp2"),family=binomial,glmerControl(optimizer="bobyqa")) #convergence warning
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC + conditionOrthContrast2 + (1 | participantCode) +
## (1 + conditionC + conditionOrthContrast2 | stimulus)
## Data: subset(d, exp == "exp2")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11886.5 11957.3 -5933.3 11866.5 8736
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1902 -1.0241 0.4887 0.9259 1.3662
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.236011 0.48581
## stimulus (Intercept) 0.000000 0.00000
## conditionC 0.006386 0.07991 NaN
## conditionOrthContrast2 0.003532 0.05943 NaN -1.00
## Number of obs: 8746, groups: participantCode, 243; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21054 0.03832 5.494 3.93e-08 ***
## conditionC 0.21654 0.09472 2.286 0.0222 *
## conditionOrthContrast2 -0.02112 0.08164 -0.259 0.7959
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC
## conditionC -0.008
## cndtnOrthC2 -0.002 -0.009
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[8:10,]
## 2.5 % 97.5 %
## (Intercept) 0.13543373 0.2856546
## conditionC 0.03090042 0.4021836
## conditionOrthContrast2 -0.18113716 0.1388980
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp2"&conditionC!=0),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data: subset(d, exp == "exp2" & conditionC != 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 7895.9 7915.9 -3945.0 7889.9 5827
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2363 -1.0167 0.4943 0.9153 1.3574
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2563 0.5063
## Number of obs: 5830, groups: participantCode, 162
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21900 0.04832 4.533 5.82e-06 ***
## conditionC 0.21853 0.09651 2.264 0.0236 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.010
confint(m, method="Wald")[2:3,]
## 2.5 % 97.5 %
## (Intercept) 0.12430384 0.3136995
## conditionC 0.02937304 0.4076837
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#Learnable vs. Non-Learnable
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"&conditionC!=0),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp2" & conditionC != 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 7901.8 7941.8 -3944.9 7889.8 5824
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2458 -1.0167 0.4940 0.9184 1.3877
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.256944 0.50690
## stimulus (Intercept) 0.001265 0.03556
## conditionC 0.005020 0.07086 1.00
## Number of obs: 5830, groups: participantCode, 162; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21921 0.04872 4.499 6.83e-06 ***
## conditionC 0.21892 0.09732 2.250 0.0245 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.005
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.12371158 0.3147080
## conditionC 0.02818059 0.4096622
The final model with the maximal random effects structure that still allowed the model to converge.
#Non-Learnable vs. No Pre-Exposure
d$conditionNonLearnableNoPreExp <- ifelse(d$conditionC==0.5,1.5,
ifelse(d$conditionC==0,0.5,d$conditionC))
m <- glmer(isRight~conditionNonLearnableNoPreExp+(1|participantCode),data=subset(d,exp=="exp2"&conditionNonLearnableNoPreExp!=1.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionNonLearnableNoPreExp + (1 | participantCode)
## Data: subset(d, exp == "exp2" & conditionNonLearnableNoPreExp != 1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 7925.0 7945.0 -3959.5 7919.0 5757
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6833 -1.0280 0.6637 0.9472 1.1175
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1019 0.3192
## Number of obs: 5760, groups: participantCode, 160
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.14609 0.03681 3.969 7.22e-05 ***
## conditionNonLearnableNoPreExp 0.08050 0.07357 1.094 0.274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnNnLNPE -0.008
confint(m, method="Wald")[2:3,]
## 2.5 % 97.5 %
## (Intercept) 0.07394511 0.2182280
## conditionNonLearnableNoPreExp -0.06368933 0.2246826
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~conditionNonLearnableNoPreExp+(1|participantCode)+(1+conditionNonLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&conditionNonLearnableNoPreExp!=1.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionNonLearnableNoPreExp + (1 | participantCode) +
## (1 + conditionNonLearnableNoPreExp | stimulus)
## Data: subset(d, exp == "exp2" & conditionNonLearnableNoPreExp != 1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 7931.0 7971.0 -3959.5 7919.0 5754
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6832 -1.0280 0.6637 0.9472 1.1175
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 1.019e-01 3.192e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionNonLearnableNoPreExp 1.884e-13 4.340e-07 NaN
## Number of obs: 5760, groups: participantCode, 160; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.14609 0.03681 3.969 7.22e-05 ***
## conditionNonLearnableNoPreExp 0.08050 0.07357 1.094 0.274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnNnLNPE -0.008
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.07394446 0.2182281
## conditionNonLearnableNoPreExp -0.06369568 0.2246870
The final model with the maximal random effects structure that still allowed the model to converge.
#Learnable vs. No Pre-Exposure
d$conditionLearnableNoPreExp <- ifelse(d$conditionC==-0.5,-1.5,
ifelse(d$conditionC==0,-0.5,d$conditionC))
m <- glmer(isRight~conditionLearnableNoPreExp+(1|participantCode)+(0+conditionLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&conditionLearnableNoPreExp!=-1.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionLearnableNoPreExp + (1 | participantCode) +
## (0 + conditionLearnableNoPreExp | stimulus)
## Data: subset(d, exp == "exp2" & conditionLearnableNoPreExp != -1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 7912.0 7938.7 -3952.0 7904.0 5898
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5150 -1.0227 0.4116 0.9217 1.4431
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.380740 0.61704
## stimulus conditionLearnableNoPreExp 0.007125 0.08441
## Number of obs: 5902, groups: participantCode, 164; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.27389 0.05571 4.916 8.82e-07 ***
## conditionLearnableNoPreExp 0.13751 0.11189 1.229 0.219
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnLrnNPE -0.003
confint(m, method="Wald")[3:4,]
## 2.5 % 97.5 %
## (Intercept) 0.16470200 0.3830818
## conditionLearnableNoPreExp -0.08180022 0.3568143
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#Learnable vs. No Pre-Exposure
m <- glmer(isRight~conditionLearnableNoPreExp+(1|participantCode)+(1+conditionLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&conditionLearnableNoPreExp!=-1.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionLearnableNoPreExp + (1 | participantCode) +
## (1 + conditionLearnableNoPreExp | stimulus)
## Data: subset(d, exp == "exp2" & conditionLearnableNoPreExp != -1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 7915.6 7955.7 -3951.8 7903.6 5896
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5284 -1.0206 0.4115 0.9242 1.4803
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.3815973 0.61774
## stimulus (Intercept) 0.0008796 0.02966
## conditionLearnableNoPreExp 0.0151500 0.12309 1.00
## Number of obs: 5902, groups: participantCode, 164; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.27415 0.05598 4.897 9.72e-07 ***
## conditionLearnableNoPreExp 0.13800 0.11299 1.221 0.222
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnLrnNPE 0.014
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.16443145 0.3838737
## conditionLearnableNoPreExp -0.08345495 0.3594534
The final model with the maximal random effects structure that still allowed the model to converge.
#Learnable
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & conditionC == 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3924.0 3942.1 -1959.0 3918.0 2983
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8814 -1.0176 0.3731 0.9146 1.5554
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.600946 0.77521
## stimulus (Intercept) 0.007036 0.08388
## Number of obs: 2986, groups: participantCode, 83; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36246 0.09558 3.792 0.000149 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.1751252 0.5497959
The final model with the maximal random effects structure that still allowed the model to converge.
#No Pre-Exposure
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp2"&conditionC==0),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & conditionC == 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3980.2 3992.1 -1988.1 3976.2 2914
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0079 -1.0357 0.4980 0.9318 1.1954
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1951 0.4417
## Number of obs: 2916, groups: participantCode, 81
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19355 0.06224 3.11 0.00187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.07156634 0.3155389
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#No Pre-Exposure
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&conditionC==0),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & conditionC == 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3982.2 4000.1 -1988.1 3976.2 2913
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0079 -1.0357 0.4980 0.9318 1.1954
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1951 0.4417
## stimulus (Intercept) 0.0000 0.0000
## Number of obs: 2916, groups: participantCode, 81; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19355 0.06224 3.11 0.00187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.07156761 0.3155373
The final model with the maximal random effects structure that still allowed the model to converge.
#Non-Learnable
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp2"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & conditionC == -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3937.0 3948.9 -1966.5 3933.0 2842
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2512 -1.0420 0.8860 0.9488 1.0044
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.02864 0.1692
## Number of obs: 2844, groups: participantCode, 79
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.10356 0.04223 2.452 0.0142 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.02079655 0.1863324
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#No Pre-Exposure
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&conditionC==0),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & conditionC == 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3982.2 4000.1 -1988.1 3976.2 2913
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0079 -1.0357 0.4980 0.9318 1.1954
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1951 0.4417
## stimulus (Intercept) 0.0000 0.0000
## Number of obs: 2916, groups: participantCode, 81; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19355 0.06224 3.11 0.00187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.07156761 0.3155373
The final model swith the maximal random effects structure that still allowed the models to converge.
Richter single-contrast approach.
#Familiar X test
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp2"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5977.9 5997.0 -2985.9 5971.9 4371
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6370 -1.0474 0.6335 0.9101 1.2752
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1683 0.4102
## Number of obs: 4374, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21374 0.04078 5.241 1.59e-07 ***
## conditionC 0.23421 0.09982 2.346 0.019 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.009
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.13381332 0.2936650
## conditionC 0.03856683 0.4298617
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m <- glmer(isRight~conditionC+conditionOrthContrast2+(1|participantCode),data=subset(d,exp=="exp2"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC + conditionOrthContrast2 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5979.8 6005.4 -2985.9 5971.8 4370
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6399 -1.0491 0.6358 0.9085 1.2729
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1682 0.4102
## Number of obs: 4374, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21375 0.04078 5.242 1.59e-07 ***
## conditionC 0.23405 0.09983 2.345 0.019 *
## conditionOrthContrast2 -0.01739 0.08627 -0.202 0.840
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC
## conditionC -0.009
## cndtnOrthC2 -0.002 0.008
Note that these models do not converge (singular fit), thus the parameter estimates should be interpreted with caution.
Richter single-contrast approach.
#Familiar X test
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp2" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5983.9 6022.2 -2985.9 5971.9 4368
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6370 -1.0474 0.6335 0.9101 1.2752
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 1.683e-01 4.102e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionC 9.816e-13 9.908e-07 NaN
## Number of obs: 4374, groups: participantCode, 243; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21374 0.04078 5.241 1.59e-07 ***
## conditionC 0.23421 0.09983 2.346 0.019 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.009
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## .sig03 NA NA
## .sig04 NA NA
## (Intercept) 0.13381304 0.2936653
## conditionC 0.03855837 0.4298705
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m <- glmer(isRight~conditionC+conditionOrthContrast2+(1|participantCode)+(1+conditionC+conditionOrthContrast2|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC + conditionOrthContrast2 + (1 | participantCode) +
## (1 + conditionC + conditionOrthContrast2 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5991.4 6055.2 -2985.7 5971.4 4364
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6593 -1.0338 0.6264 0.9200 1.2700
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.168977 0.41107
## stimulus (Intercept) 0.000000 0.00000
## conditionC 0.006392 0.07995 NaN
## conditionOrthContrast2 0.013478 0.11610 NaN -1.00
## Number of obs: 4374, groups: participantCode, 243; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21404 0.04083 5.242 1.59e-07 ***
## conditionC 0.23458 0.10171 2.306 0.0211 *
## conditionOrthContrast2 -0.01735 0.09062 -0.191 0.8481
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC
## conditionC -0.008
## cndtnOrthC2 -0.002 -0.049
## convergence code: 0
## boundary (singular) fit: see ?isSingular
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp2"&testType=="familiarX"&conditionC!=0),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data:
## subset(d, exp == "exp2" & testType == "familiarX" & conditionC != 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3976.3 3994.2 -1985.1 3970.3 2913
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6929 -1.0392 0.5907 0.9135 1.3185
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1952 0.4418
## Number of obs: 2916, groups: participantCode, 162
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22128 0.05171 4.280 1.87e-05 ***
## conditionC 0.23636 0.10330 2.288 0.0221 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.010
confint(m, method="Wald")[2:3,]
## 2.5 % 97.5 %
## (Intercept) 0.11993445 0.3226191
## conditionC 0.03390341 0.4388136
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#Learnable vs. Non-Learnable
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&conditionC!=0),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data:
## subset(d, exp == "exp2" & testType == "familiarX" & conditionC != 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3982.1 4018.0 -1985.0 3970.1 2910
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7313 -1.0305 0.6027 0.9196 1.3325
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.196003 0.44272
## stimulus (Intercept) 0.002680 0.05177
## conditionC 0.004735 0.06881 1.00
## Number of obs: 2916, groups: participantCode, 162; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22160 0.05319 4.166 3.1e-05 ***
## conditionC 0.23697 0.10470 2.263 0.0236 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.026
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.11734423 0.3258622
## conditionC 0.03176701 0.4421646
The final model with the maximal random effects structure that still allowed the model to converge.
#Non-Learnable vs. No Pre-Exposure
d$conditionNonLearnableNoPreExp <- ifelse(d$conditionC==0.5,1.5,
ifelse(d$conditionC==0,0.5,d$conditionC))
m <- glmer(isRight~conditionNonLearnableNoPreExp+(1|participantCode),data=subset(d,exp=="exp2"&testType=="familiarX"&conditionNonLearnableNoPreExp!=1.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionNonLearnableNoPreExp + (1 | participantCode)
## Data:
## subset(d, exp == "exp2" & testType == "familiarX" & conditionNonLearnableNoPreExp !=
## 1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3978.9 3996.8 -1986.5 3972.9 2877
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2603 -1.0620 0.8258 0.9242 1.0339
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.04497 0.2121
## Number of obs: 2880, groups: participantCode, 160
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.14732 0.04118 3.578 0.000347 ***
## conditionNonLearnableNoPreExp 0.09535 0.08232 1.158 0.246734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnNnLNPE -0.009
confint(m, method="Wald")[2:3,]
## 2.5 % 97.5 %
## (Intercept) 0.06661052 0.2280203
## conditionNonLearnableNoPreExp -0.06599196 0.2566988
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~conditionNonLearnableNoPreExp+(1|participantCode)+(1+conditionNonLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&conditionNonLearnableNoPreExp!=1.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionNonLearnableNoPreExp + (1 | participantCode) +
## (1 + conditionNonLearnableNoPreExp | stimulus)
## Data:
## subset(d, exp == "exp2" & testType == "familiarX" & conditionNonLearnableNoPreExp !=
## 1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3984.9 4020.7 -1986.5 3972.9 2874
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2603 -1.0620 0.8258 0.9242 1.0339
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 4.497e-02 2.121e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionNonLearnableNoPreExp 8.318e-14 2.884e-07 NaN
## Number of obs: 2880, groups: participantCode, 160; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.14732 0.04118 3.578 0.000347 ***
## conditionNonLearnableNoPreExp 0.09535 0.08232 1.158 0.246736
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnNnLNPE -0.009
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.06661060 0.2280204
## conditionNonLearnableNoPreExp -0.06599234 0.2566987
The final model with the maximal random effects structure that still allowed the model to converge.
#Learnable vs. No Pre-Exposure
d$conditionLearnableNoPreExp <- ifelse(d$conditionC==-0.5,-1.5,
ifelse(d$conditionC==0,-0.5,d$conditionC))
m <- glmer(isRight~conditionLearnableNoPreExp+(1|participantCode)+(0+conditionLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&conditionLearnableNoPreExp!=-1.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionLearnableNoPreExp + (1 | participantCode) +
## (0 + conditionLearnableNoPreExp | stimulus)
## Data:
## subset(d, exp == "exp2" & testType == "familiarX" & conditionLearnableNoPreExp !=
## -1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3994.1 4018.1 -1993.0 3986.1 2948
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8783 -1.0341 0.5433 0.8938 1.4495
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.29097 0.5394
## stimulus conditionLearnableNoPreExp 0.02787 0.1670
## Number of obs: 2952, groups: participantCode, 164; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.27937 0.05724 4.881 1.06e-06 ***
## conditionLearnableNoPreExp 0.14039 0.12069 1.163 0.245
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnLrnNPE -0.002
confint(m, method="Wald")[3:4,]
## 2.5 % 97.5 %
## (Intercept) 0.16719023 0.3915568
## conditionLearnableNoPreExp -0.09615829 0.3769318
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#Learnable vs. No Pre-Exposure
m <- glmer(isRight~conditionLearnableNoPreExp+(1|participantCode)+(1+conditionLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&conditionLearnableNoPreExp!=-1.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionLearnableNoPreExp + (1 | participantCode) +
## (1 + conditionLearnableNoPreExp | stimulus)
## Data:
## subset(d, exp == "exp2" & testType == "familiarX" & conditionLearnableNoPreExp !=
## -1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3998.1 4034.0 -1993.0 3986.1 2946
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8783 -1.0341 0.5433 0.8938 1.4495
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.29097 0.5394
## stimulus (Intercept) 0.00000 0.0000
## conditionLearnableNoPreExp 0.02787 0.1670 NaN
## Number of obs: 2952, groups: participantCode, 164; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.27937 0.05723 4.881 1.05e-06 ***
## conditionLearnableNoPreExp 0.14039 0.12066 1.164 0.245
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnLrnNPE -0.002
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.16719848 0.3915488
## conditionLearnableNoPreExp -0.09609512 0.3768695
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&condition=="Learnable Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "familiarX" & condition ==
## "Learnable Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1983.4 1999.3 -988.7 1977.4 1491
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1794 -1.0002 0.4687 0.8565 1.6969
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.50348 0.7096
## stimulus (Intercept) 0.01017 0.1008
## Number of obs: 1494, groups: participantCode, 83; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36784 0.09913 3.711 0.000207 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## 0.1735530 0.5621242
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp2"&testType=="familiarX"&condition=="No Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "familiarX" & condition ==
## "No Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2004.7 2015.2 -1000.3 2000.7 1456
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4595 -1.0674 0.6852 0.9015 1.0512
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1172 0.3424
## Number of obs: 1458, groups: participantCode, 81
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19919 0.06564 3.035 0.00241 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")[2,]
## 2.5 % 97.5 %
## 0.07053917 0.32783279
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&condition=="No Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "familiarX" & condition ==
## "No Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2006.7 2022.5 -1000.3 2000.7 1455
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4595 -1.0674 0.6852 0.9015 1.0512
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1172 0.3424
## stimulus (Intercept) 0.0000 0.0000
## Number of obs: 1458, groups: participantCode, 81; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19919 0.06564 3.035 0.00241 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## 0.07053982 0.32783222
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glm(isRight~1,data=subset(d,exp=="exp2"&testType=="familiarX"&condition=="Non-Learnable Pre-Exposure"),family=binomial)
summary(m)
##
## Call:
## glm(formula = isRight ~ 1, family = binomial, data = subset(d,
## exp == "exp2" & testType == "familiarX" & condition == "Non-Learnable Pre-Exposure"))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.220 -1.220 1.136 1.136 1.136
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.09853 0.05310 1.856 0.0635 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1967.9 on 1421 degrees of freedom
## Residual deviance: 1967.9 on 1421 degrees of freedom
## AIC: 1969.9
##
## Number of Fisher Scoring iterations: 3
confint(m, method="Wald")
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## -0.005479146 0.202722259
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&testType=="familiarX"&condition=="Non-Learnable Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "familiarX" & condition ==
## "Non-Learnable Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1973.9 1989.6 -983.9 1967.9 1419
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.0505 -1.0505 0.9519 0.9519 0.9519
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0 0
## stimulus (Intercept) 0 0
## Number of obs: 1422, groups: participantCode, 79; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.09853 0.05310 1.856 0.0635 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## -0.005544124 0.202609200
The final model swith the maximal random effects structure that still allowed the models to converge.
Richter single-contrast approach.
#novel X test
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5985.5 6004.7 -2989.8 5979.5 4369
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6300 -1.0533 0.6135 0.9244 1.2478
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1799 0.4242
## Number of obs: 4372, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.18786 0.04135 4.544 5.53e-06 ***
## conditionC 0.16734 0.10124 1.653 0.0984 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.012
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.10682393 0.2689007
## conditionC -0.03109545 0.3657677
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m <- glmer(isRight~conditionC+conditionOrthContrast2+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC + conditionOrthContrast2 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5987.5 6013.0 -2989.7 5979.5 4368
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6334 -1.0492 0.6122 0.9226 1.2451
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1798 0.4241
## Number of obs: 4372, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.18788 0.04134 4.544 5.51e-06 ***
## conditionC 0.16709 0.10125 1.650 0.0989 .
## conditionOrthContrast2 -0.02148 0.08750 -0.245 0.8061
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC
## conditionC -0.012
## cndtnOrthC2 -0.003 0.009
Note that these models do not converge (singular fit), thus the parameter estimates should be interpreted with caution.
Richter single-contrast approach.
#novel X test
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp2" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5991.5 6029.8 -2989.8 5979.5 4366
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6300 -1.0533 0.6135 0.9244 1.2478
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 1.799e-01 4.242e-01
## stimulus (Intercept) 7.604e-48 2.758e-24
## conditionC 4.796e-11 6.926e-06 1.00
## Number of obs: 4372, groups: participantCode, 243; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.18786 0.04135 4.544 5.53e-06 ***
## conditionC 0.16734 0.10124 1.653 0.0984 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.012
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## .sig03 NA NA
## .sig04 NA NA
## (Intercept) 0.10682401 0.2689005
## conditionC -0.03110048 0.3657719
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m <- glmer(isRight~conditionC+conditionOrthContrast2+(1|participantCode)+(1+conditionC+conditionOrthContrast2|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC + conditionOrthContrast2 + (1 | participantCode) +
## (1 + conditionC + conditionOrthContrast2 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5999.4 6063.3 -2989.7 5979.4 4362
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6110 -1.0469 0.6151 0.9186 1.2489
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 1.800e-01 0.42431
## stimulus (Intercept) 3.249e-05 0.00570
## conditionC 4.784e-03 0.06916 1.00
## conditionOrthContrast2 8.576e-04 0.02928 -1.00 -1.00
## Number of obs: 4372, groups: participantCode, 243; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.18795 0.04138 4.542 5.57e-06 ***
## conditionC 0.16725 0.10259 1.630 0.103
## conditionOrthContrast2 -0.02156 0.08780 -0.246 0.806
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC
## conditionC -0.006
## cndtnOrthC2 -0.005 -0.003
## convergence code: 0
## boundary (singular) fit: see ?isSingular
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"&conditionC!=0),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "novelX" & conditionC !=
## 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3978.1 3996.0 -1986.0 3972.1 2911
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7107 -1.0286 0.5846 0.9198 1.2856
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2208 0.4699
## Number of obs: 2914, groups: participantCode, 162
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19742 0.05324 3.708 0.000209 ***
## conditionC 0.17020 0.10638 1.600 0.109609
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.014
confint(m, method="Wald")[2:3,]
## 2.5 % 97.5 %
## (Intercept) 0.09307004 0.3017737
## conditionC -0.03829648 0.3786892
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#Learnable vs. Non-Learnable
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"&conditionC!=0),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp2" & testType == "novelX" & conditionC !=
## 0)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3984.1 4020.0 -1986.0 3972.1 2908
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6985 -1.0278 0.5844 0.9194 1.2875
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.2209195 0.47002
## stimulus (Intercept) 0.0001521 0.01233
## conditionC 0.0022525 0.04746 1.00
## Number of obs: 2914, groups: participantCode, 162; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.19747 0.05334 3.702 0.000214 ***
## conditionC 0.17028 0.10699 1.592 0.111487
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.008
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.09293437 0.3020100
## conditionC -0.03941817 0.3799848
The final model with the maximal random effects structure that still allowed the model to converge.
#Non-Learnable vs. No Pre-Exposure
d$conditionNonLearnableNoPreExp <- ifelse(d$conditionC==0.5,1.5,
ifelse(d$conditionC==0,0.5,d$conditionC))
m <- glmer(isRight~conditionNonLearnableNoPreExp+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"&conditionNonLearnableNoPreExp!=1.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionNonLearnableNoPreExp + (1 | participantCode)
## Data:
## subset(d, exp == "exp2" & testType == "novelX" & conditionNonLearnableNoPreExp !=
## 1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3977.8 3995.7 -1985.9 3971.8 2877
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3354 -1.0475 0.8108 0.9335 1.1046
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.07499 0.2739
## Number of obs: 2880, groups: participantCode, 160
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.13873 0.04350 3.189 0.00143 **
## conditionNonLearnableNoPreExp 0.05942 0.08696 0.683 0.49446
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnNnLNPE -0.010
confint(m, method="Wald")[2:3,]
## 2.5 % 97.5 %
## (Intercept) 0.05346753 0.2239883
## conditionNonLearnableNoPreExp -0.11102859 0.2298610
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~conditionNonLearnableNoPreExp+(1|participantCode)+(1+conditionNonLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"&conditionNonLearnableNoPreExp!=1.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionNonLearnableNoPreExp + (1 | participantCode) +
## (1 + conditionNonLearnableNoPreExp | stimulus)
## Data:
## subset(d, exp == "exp2" & testType == "novelX" & conditionNonLearnableNoPreExp !=
## 1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3983.8 4019.6 -1985.9 3971.8 2874
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3354 -1.0475 0.8108 0.9335 1.1046
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 7.499e-02 2.739e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionNonLearnableNoPreExp 6.435e-13 8.022e-07 NaN
## Number of obs: 2880, groups: participantCode, 160; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.13873 0.04350 3.189 0.00143 **
## conditionNonLearnableNoPreExp 0.05942 0.08697 0.683 0.49447
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnNnLNPE -0.010
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.05346743 0.2239885
## conditionNonLearnableNoPreExp -0.11103239 0.2298644
The final model with the maximal random effects structure that still allowed the model to converge.
#Learnable vs. No Pre-Exposure
d$conditionLearnableNoPreExp <- ifelse(d$conditionC==-0.5,-1.5,
ifelse(d$conditionC==0,-0.5,d$conditionC))
m <- glmer(isRight~conditionLearnableNoPreExp+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"&conditionLearnableNoPreExp!=-1.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionLearnableNoPreExp + (1 | participantCode)
## Data:
## subset(d, exp == "exp2" & testType == "novelX" & conditionLearnableNoPreExp !=
## -1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 4012.6 4030.6 -2003.3 4006.6 2947
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7797 -1.0416 0.5391 0.9040 1.2670
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2611 0.511
## Number of obs: 2950, groups: participantCode, 164
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.2318 0.0554 4.184 2.86e-05 ***
## conditionLearnableNoPreExp 0.1090 0.1105 0.986 0.324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnLrnNPE -0.003
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.1232104 0.3403638
## conditionLearnableNoPreExp -0.1076433 0.3255717
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#Learnable vs. No Pre-Exposure
m <- glmer(isRight~conditionLearnableNoPreExp+(1|participantCode)+(1+conditionLearnableNoPreExp|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"&conditionLearnableNoPreExp!=-1.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionLearnableNoPreExp + (1 | participantCode) +
## (1 + conditionLearnableNoPreExp | stimulus)
## Data:
## subset(d, exp == "exp2" & testType == "novelX" & conditionLearnableNoPreExp !=
## -1.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 4018.6 4054.5 -2003.3 4006.6 2944
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7669 -1.0416 0.5390 0.9039 1.2767
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.261329 0.51120
## stimulus (Intercept) 0.000271 0.01646
## conditionLearnableNoPreExp 0.002611 0.05110 1.00
## Number of obs: 2950, groups: participantCode, 164; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.23186 0.05555 4.174 3e-05 ***
## conditionLearnableNoPreExp 0.10908 0.11121 0.981 0.327
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnLrnNPE 0.004
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.1229754 0.340737
## conditionLearnableNoPreExp -0.1088836 0.327037
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"&condition=="Learnable Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "novelX" & condition ==
## "Learnable Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1999.2 2015.1 -996.6 1993.2 1489
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0315 -1.0447 0.4406 0.8819 1.4071
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.459444 0.67782
## stimulus (Intercept) 0.001974 0.04443
## Number of obs: 1492, groups: participantCode, 83; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.30295 0.09367 3.234 0.00122 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## 0.1193661 0.4865296
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"&condition=="No Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "novelX" & condition ==
## "No Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2009.4 2020.0 -1002.7 2005.4 1456
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4130 -1.0596 0.7077 0.9109 1.0877
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1042 0.3227
## Number of obs: 1458, groups: participantCode, 81
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.16987 0.06424 2.644 0.00818 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")[2,]
## 2.5 % 97.5 %
## 0.04396547 0.29578076
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"&condition=="No Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "novelX" & condition ==
## "No Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2011.4 2027.3 -1002.7 2005.4 1455
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4130 -1.0596 0.7077 0.9109 1.0877
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.042e-01 0.3227442
## stimulus (Intercept) 4.000e-14 0.0000002
## Number of obs: 1458, groups: participantCode, 81; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.16987 0.06424 2.644 0.00818 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## 0.04396522 0.29578106
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp2"&testType=="novelX"&condition=="Non-Learnable Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "exp2" & testType == "novelX" & condition ==
## "Non-Learnable Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1969.7 1980.2 -982.9 1965.7 1420
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2242 -1.0456 0.8667 0.9378 1.0552
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.04776 0.2185
## Number of obs: 1422, groups: participantCode, 79
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.10830 0.05883 1.841 0.0656 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) -0.00700433 0.2235945
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp2"&testType=="novelX"&condition=="Non-Learnable Pre-Exposure"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp2" & testType == "novelX" & condition ==
## "Non-Learnable Pre-Exposure")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1971.7 1987.5 -982.9 1965.7 1419
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2242 -1.0456 0.8667 0.9378 1.0552
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 4.776e-02 2.185e-01
## stimulus (Intercept) 2.467e-14 1.571e-07
## Number of obs: 1422, groups: participantCode, 79; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.10830 0.05883 1.841 0.0656 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[3,]
## 2.5 % 97.5 %
## -0.007004624 0.223595045
The final model with the maximal random effects structure that still allowed the model to converge.
#recode test type
d$testTypeC <- ifelse(d$testType=="novelX",0.5,
ifelse(d$testType=="familiarX",-0.5,NA))
##all data
m <- glmer(isRight~conditionC*testTypeC+(1|participantCode),data=subset(d,exp=="exp2"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC * testTypeC + (1 | participantCode)
## Data: subset(d, exp == "exp2")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11876.0 11911.4 -5933.0 11866.0 8741
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2135 -1.0274 0.4906 0.9289 1.3629
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2358 0.4856
## Number of obs: 8746, groups: participantCode, 243
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21043 0.03831 5.493 3.94e-08 ***
## conditionC 0.21653 0.09373 2.310 0.0209 *
## testTypeC -0.02662 0.04404 -0.604 0.5455
## conditionC:testTypeC -0.06837 0.10798 -0.633 0.5266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC tstTyC
## conditionC -0.008
## testTypeC -0.001 -0.001
## cndtnC:tsTC -0.001 -0.001 0.000
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.13534795 0.2855030
## conditionC 0.03283099 0.4002266
## testTypeC -0.11292590 0.0596914
## conditionC:testTypeC -0.28001687 0.1432687
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
m <- glmer(isRight~conditionC*testTypeC+(1+testTypeC|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp2"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC * testTypeC + (1 + testTypeC | participantCode) +
## (1 + conditionC | stimulus)
## Data: subset(d, exp == "exp2")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11886.0 11956.7 -5933.0 11866.0 8736
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1980 -1.0278 0.4873 0.9287 1.3661
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 2.358e-01 4.856e-01
## testTypeC 1.253e-04 1.119e-02 1.00
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionC 1.663e-11 4.079e-06 NaN
## Number of obs: 8746, groups: participantCode, 243; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.21041 0.03831 5.493 3.95e-08 ***
## conditionC 0.21650 0.09373 2.310 0.0209 *
## testTypeC -0.02562 0.04436 -0.578 0.5635
## conditionC:testTypeC -0.06697 0.10828 -0.619 0.5362
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC tstTyC
## conditionC -0.008
## testTypeC 0.013 -0.001
## cndtnC:tsTC -0.001 0.013 0.008
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[7:10,]
## 2.5 % 97.5 %
## (Intercept) 0.13533088 0.28548410
## conditionC 0.03278973 0.40020560
## testTypeC -0.11257745 0.06132889
## conditionC:testTypeC -0.27918889 0.14524766
Richter single-contrast approach.
#recode condition
subj_overall$conditionC <- ifelse(subj_overall$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_overall$condition=="Non-Learnable Pre-Exposure",-0.5,
ifelse(subj_overall$condition=="No Pre-Exposure",0,NA)))
subj_overall$conditionOrthContrast2 <- ifelse(subj_overall$condition=="Learnable Pre-Exposure",-1/3,
ifelse(subj_overall$condition=="Non-Learnable Pre-Exposure",-1/3,
ifelse(subj_overall$condition=="No Pre-Exposure",2/3,NA)))
#overall analysis (Richter single-contrast apporach)
m <- lm(dprime~conditionC,data=subset(subj_overall,exp=="exp2"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_overall,
## exp == "exp2"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8479 -0.4792 -0.1865 0.1336 3.5085
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32047 0.05898 5.433 1.35e-07 ***
## conditionC 0.34656 0.14448 2.399 0.0172 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9193 on 241 degrees of freedom
## Multiple R-squared: 0.02332, Adjusted R-squared: 0.01926
## F-statistic: 5.754 on 1 and 241 DF, p-value: 0.01722
Abelson & Prentice approach.
##check same analysis with Abelson & Prentice approach
m <- lm(dprime~conditionC+conditionOrthContrast2,data=subset(subj_overall,exp=="exp2"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC + conditionOrthContrast2, data = subset(subj_overall,
## exp == "exp2"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8619 -0.4670 -0.2005 0.1346 3.5373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32048 0.05909 5.423 1.43e-07 ***
## conditionC 0.34585 0.14476 2.389 0.0177 *
## conditionOrthContrast2 -0.04310 0.12534 -0.344 0.7312
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.921 on 240 degrees of freedom
## Multiple R-squared: 0.0238, Adjusted R-squared: 0.01566
## F-statistic: 2.925 on 2 and 240 DF, p-value: 0.05556
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp2"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8619 -0.6489 -0.3325 -0.0675 3.3212
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5078 0.1285 3.951 0.000164 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.171 on 82 degrees of freedom
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp2"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1532 -0.4403 -0.2917 0.1390 3.5373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29174 0.09989 2.921 0.00454 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8991 on 80 degrees of freedom
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp2"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7869 -0.3238 -0.1619 0.2160 2.9732
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16192 0.06558 2.469 0.0157 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5829 on 78 degrees of freedom
Pairwise comparison between conditions.
Learnable Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#compare conditions
#Learnable vs. Non-Learnable
m <- lm(dprime~conditionC,data=subset(subj_overall,exp=="exp2"&conditionC!=0))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_overall,
## exp == "exp2" & conditionC != 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8619 -0.5048 -0.1812 0.1203 3.3212
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.33485 0.07323 4.573 9.59e-06 ***
## conditionC 0.34585 0.14645 2.362 0.0194 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9317 on 160 degrees of freedom
## Multiple R-squared: 0.03368, Adjusted R-squared: 0.02764
## F-statistic: 5.577 on 1 and 160 DF, p-value: 0.0194
No Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#Non-Learnable vs. No Pre-Exposure
subj_overall$conditionNonLearnableNoPreExp <- ifelse(subj_overall$conditionC==0.5,1.5,
ifelse(subj_overall$conditionC==0,0.5,subj_overall$conditionC))
m <- lm(dprime~conditionNonLearnableNoPreExp,data=subset(subj_overall,exp=="exp2"&conditionNonLearnableNoPreExp!=1.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionNonLearnableNoPreExp, data = subset(subj_overall,
## exp == "exp2" & conditionNonLearnableNoPreExp != 1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1532 -0.4358 -0.1619 0.1580 3.5373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22683 0.06006 3.777 0.000224 ***
## conditionNonLearnableNoPreExp 0.12982 0.12011 1.081 0.281417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7596 on 158 degrees of freedom
## Multiple R-squared: 0.007339, Adjusted R-squared: 0.001057
## F-statistic: 1.168 on 1 and 158 DF, p-value: 0.2814
Learnable Pre-Exposure vs. No Pre-Exposure Condition
#No Pre-Exposure vs. Learnable
subj_overall$conditionLearnableNoPreExp <- ifelse(subj_overall$conditionC==-0.5,-1.5,
ifelse(subj_overall$conditionC==0,-0.5,subj_overall$conditionC))
m <- lm(dprime~conditionLearnableNoPreExp,data=subset(subj_overall,exp=="exp2"&conditionLearnableNoPreExp!=-1.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionLearnableNoPreExp, data = subset(subj_overall,
## exp == "exp2" & conditionLearnableNoPreExp != -1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8619 -0.5078 -0.2917 0.1302 3.5373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.39976 0.08164 4.896 2.34e-06 ***
## conditionLearnableNoPreExp 0.21603 0.16329 1.323 0.188
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.045 on 162 degrees of freedom
## Multiple R-squared: 0.01069, Adjusted R-squared: 0.004582
## F-statistic: 1.75 on 1 and 162 DF, p-value: 0.1877
Testing against chance: Learnable Pre-Exposure
#Learnable
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp2"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8619 -0.6489 -0.3325 -0.0675 3.3212
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5078 0.1285 3.951 0.000164 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.171 on 82 degrees of freedom
Testing against chance: No Pre-Exposure
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp2"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1532 -0.4403 -0.2917 0.1390 3.5373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29174 0.09989 2.921 0.00454 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8991 on 80 degrees of freedom
Testing against chance: Non-Learnable Pre-Exposure
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp2"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7869 -0.3238 -0.1619 0.2160 2.9732
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16192 0.06558 2.469 0.0157 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5829 on 78 degrees of freedom
Condition Effect
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-0.5,
ifelse(subj_testType$condition=="No Pre-Exposure",0,NA)))
subj_testType$conditionOrthContrast2 <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",-1/3,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-1/3,
ifelse(subj_testType$condition=="No Pre-Exposure",2/3,NA)))
#Familiar X test
#overall analysis (Richter single-contrast apporach)
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9241 -0.5875 -0.1333 0.3226 2.8784
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30809 0.05993 5.141 5.66e-07 ***
## conditionC 0.34950 0.14680 2.381 0.0181 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.934 on 241 degrees of freedom
## Multiple R-squared: 0.02298, Adjusted R-squared: 0.01893
## F-statistic: 5.668 on 1 and 241 DF, p-value: 0.01805
##check same analysis with Abelson & Prentice approach
m <- lm(dprime~conditionC+conditionOrthContrast2,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC + conditionOrthContrast2, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9283 -0.5789 -0.1377 0.3255 2.8869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30809 0.06005 5.130 5.97e-07 ***
## conditionC 0.34929 0.14712 2.374 0.0184 *
## conditionOrthContrast2 -0.01288 0.12738 -0.101 0.9196
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.936 on 240 degrees of freedom
## Multiple R-squared: 0.02302, Adjusted R-squared: 0.01488
## F-statistic: 2.828 on 2 and 240 DF, p-value: 0.06113
Pairwise comparisons: Learnable Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#compare conditions
#Learnable vs. Non-Learnable
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC!=0))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX" & conditionC != 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9283 -0.4870 -0.1377 0.3415 2.6994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.31238 0.07502 4.164 5.1e-05 ***
## conditionC 0.34929 0.15004 2.328 0.0212 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9546 on 160 degrees of freedom
## Multiple R-squared: 0.03276, Adjusted R-squared: 0.02672
## F-statistic: 5.419 on 1 and 160 DF, p-value: 0.02117
No Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#Non-Learnable vs. No Pre-Exposure
subj_testType$conditionNonLearnableNoPreExp <- ifelse(subj_testType$conditionC==0.5,1.5,
ifelse(subj_testType$conditionC==0,0.5,subj_testType$conditionC))
m <- lm(dprime~conditionNonLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionNonLearnableNoPreExp!=1.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionNonLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX" & conditionNonLearnableNoPreExp !=
## 1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3804 -0.4395 -0.1377 0.3200 2.8869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.21862 0.06352 3.442 0.00074 ***
## conditionNonLearnableNoPreExp 0.16177 0.12704 1.273 0.20475
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8034 on 158 degrees of freedom
## Multiple R-squared: 0.01016, Adjusted R-squared: 0.003894
## F-statistic: 1.622 on 1 and 158 DF, p-value: 0.2048
Learnable Pre-Exposure vs. No Pre-Exposure Condition
#No Pre-Exposure vs. Learnable
subj_testType$conditionLearnableNoPreExp <- ifelse(subj_testType$conditionC==-0.5,-1.5,
ifelse(subj_testType$conditionC==0,-0.5,subj_testType$conditionC))
m <- lm(dprime~conditionLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionLearnableNoPreExp!=-1.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX" & conditionLearnableNoPreExp !=
## -1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9283 -0.6335 -0.2478 0.3295 2.8869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.39327 0.08064 4.877 2.55e-06 ***
## conditionLearnableNoPreExp 0.18752 0.16127 1.163 0.247
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.033 on 162 degrees of freedom
## Multiple R-squared: 0.008277, Adjusted R-squared: 0.002155
## F-statistic: 1.352 on 1 and 162 DF, p-value: 0.2466
Testing against chance: Learnable Pre-Exposure
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp2" & testType == "familiarX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9283 -0.7781 -0.1960 0.3415 2.6994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4870 0.1261 3.861 0.000224 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.149 on 82 degrees of freedom
Testing against chance: No Pre-Exposure
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp2" & testType == "familiarX" & conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3804 -0.5905 -0.2995 0.3255 2.8869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29951 0.09973 3.003 0.00357 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8976 on 80 degrees of freedom
Testing against chance: Non-Learnable Pre-Exposure
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp2" & testType == "familiarX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3332 -0.4288 -0.1377 0.3182 2.6761
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13774 0.07804 1.765 0.0815 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6936 on 78 degrees of freedom
Condition Effect
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-0.5,
ifelse(subj_testType$condition=="No Pre-Exposure",0,NA)))
subj_testType$conditionOrthContrast2 <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",-1/3,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-1/3,
ifelse(subj_testType$condition=="No Pre-Exposure",2/3,NA)))
#Novel X test
#overall analysis (Richter single-contrast apporach)
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp2"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1235 -0.4654 -0.1111 0.2987 2.9147
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27170 0.05882 4.62 6.27e-06 ***
## conditionC 0.23767 0.14407 1.65 0.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9167 on 241 degrees of freedom
## Multiple R-squared: 0.01117, Adjusted R-squared: 0.007063
## F-statistic: 2.721 on 1 and 241 DF, p-value: 0.1003
##check same analysis with Abelson & Prentice approach
m <- lm(dprime~conditionC+conditionOrthContrast2,data=subset(subj_testType,exp=="exp2"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC + conditionOrthContrast2, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1357 -0.4782 -0.1233 0.2902 2.9398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27171 0.05893 4.611 6.52e-06 ***
## conditionC 0.23705 0.14436 1.642 0.102
## conditionOrthContrast2 -0.03756 0.12499 -0.301 0.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9184 on 240 degrees of freedom
## Multiple R-squared: 0.01154, Adjusted R-squared: 0.003301
## F-statistic: 1.401 on 2 and 240 DF, p-value: 0.2484
Pairwise comparisons: Learnable Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#compare conditions
#Learnable vs. Non-Learnable
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC!=0))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX" & conditionC != 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1357 -0.4889 -0.1233 0.3761 2.7837
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28423 0.07475 3.802 0.000204 ***
## conditionC 0.23705 0.14951 1.586 0.114827
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9512 on 160 degrees of freedom
## Multiple R-squared: 0.01547, Adjusted R-squared: 0.009315
## F-statistic: 2.514 on 1 and 160 DF, p-value: 0.1148
No Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#Non-Learnable vs. No Pre-Exposure
subj_testType$conditionNonLearnableNoPreExp <- ifelse(subj_testType$conditionC==0.5,1.5,
ifelse(subj_testType$conditionC==0,0.5,subj_testType$conditionC))
m <- lm(dprime~conditionNonLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionNonLearnableNoPreExp!=1.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionNonLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX" & conditionNonLearnableNoPreExp !=
## 1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8171 -0.4567 -0.1657 0.3238 2.9398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20618 0.06324 3.26 0.00136 **
## conditionNonLearnableNoPreExp 0.08096 0.12648 0.64 0.52302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7998 on 158 degrees of freedom
## Multiple R-squared: 0.002587, Adjusted R-squared: -0.003726
## F-statistic: 0.4098 on 1 and 158 DF, p-value: 0.523
Learnable Pre-Exposure vs. No Pre-Exposure Condition
#No Pre-Exposure vs. Learnable
subj_testType$conditionLearnableNoPreExp <- ifelse(subj_testType$conditionC==-0.5,-1.5,
ifelse(subj_testType$conditionC==0,-0.5,subj_testType$conditionC))
m <- lm(dprime~conditionLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionLearnableNoPreExp!=-1.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX" & conditionLearnableNoPreExp !=
## -1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1357 -0.5290 -0.1233 0.1781 2.9398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32471 0.07737 4.197 4.45e-05 ***
## conditionLearnableNoPreExp 0.15609 0.15474 1.009 0.315
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9907 on 162 degrees of freedom
## Multiple R-squared: 0.006242, Adjusted R-squared: 0.0001073
## F-statistic: 1.017 on 1 and 162 DF, p-value: 0.3146
Testing against chance: Learnable Pre-Exposure
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp2" & testType == "novelX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1357 -0.6938 -0.1233 0.1950 2.7837
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4028 0.1220 3.3 0.00143 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.112 on 82 degrees of freedom
Testing against chance: No Pre-Exposure
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp2" & testType == "novelX" & conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4421 -0.2467 -0.2467 0.1259 2.9398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24666 0.09434 2.615 0.0107 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.849 on 80 degrees of freedom
Testing against chance: Non-Learnable Pre-Exposure
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp2" & testType == "novelX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8171 -0.4567 0.1137 0.4047 2.6482
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16570 0.08394 1.974 0.0519 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7461 on 78 degrees of freedom
#recode test type
subj_testType$testTypeC <- ifelse(subj_testType$testType=="novelX",0.5,
ifelse(subj_testType$testType=="familiarX",-0.5,NA))
m <- lm(dprime~conditionC*testTypeC,data=subset(subj_testType,exp=="exp2"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC * testTypeC, data = subset(subj_testType,
## exp == "exp2"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9241 -0.5011 -0.1333 0.3061 2.9147
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28990 0.04199 6.905 1.59e-11 ***
## conditionC 0.29359 0.10284 2.855 0.00449 **
## testTypeC -0.03639 0.08397 -0.433 0.66494
## conditionC:testTypeC -0.11184 0.20568 -0.544 0.58688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9254 on 482 degrees of freedom
## Multiple R-squared: 0.01761, Adjusted R-squared: 0.0115
## F-statistic: 2.881 on 3 and 482 DF, p-value: 0.03551
Unlike with the sensitivty/ accuracy measures, we had no specific hypothesis (linear or otherwise) with respect to response bias. Hence, we test for an overall effect of condition (multi-df, omnibus effect) with condition dummy-coded.
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Non-Learnable Pre-Exposure",-0.5,
ifelse(subj_testType$condition=="No Pre-Exposure",0,NA)))
#overall analysis (condition dummy-coded)
m <- lm(c~condition,data=subset(subj_overall,exp=="exp2"))
summary(m)
##
## Call:
## lm(formula = c ~ condition, data = subset(subj_overall, exp ==
## "exp2"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.63271 -0.16921 0.05426 0.20904 1.02369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.19537 0.04429 -4.411 1.55e-05
## conditionNo Pre-Exposure -0.08643 0.06302 -1.371 0.1715
## conditionNon-Learnable Pre-Exposure -0.10824 0.06342 -1.707 0.0892
##
## (Intercept) ***
## conditionNo Pre-Exposure
## conditionNon-Learnable Pre-Exposure .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4035 on 240 degrees of freedom
## Multiple R-squared: 0.01352, Adjusted R-squared: 0.005295
## F-statistic: 1.644 on 2 and 240 DF, p-value: 0.1954
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: c
## Sum Sq Df F value Pr(>F)
## (Intercept) 3.168 1 19.4595 1.552e-05 ***
## condition 0.535 2 1.6441 0.1954
## Residuals 39.073 240
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There is no significant overall effect of condition on response bias c - indicating that response bias does not differ overall across conditions.
m <- lm(c~1,data=subset(subj_overall,exp=="exp2"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.02527 -0.16921 0.05426 0.19537 1.01152
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.19537 0.03824 -5.108 2.08e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3484 on 82 degrees of freedom
m <- lm(c~1,data=subset(subj_overall,exp=="exp2"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.63271 -0.20191 -0.00042 0.28180 1.02369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.28180 0.05338 -5.279 1.09e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4804 on 80 degrees of freedom
m <- lm(c~1,data=subset(subj_overall,exp=="exp2"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.61089 -0.14041 0.08825 0.22831 0.66820
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.30361 0.04158 -7.301 2.09e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3696 on 78 degrees of freedom
Pairwise comparison between conditions.
Learnable Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#compare conditions
#Learnable vs. Non-Learnable
m <- lm(c~conditionC,data=subset(subj_overall,exp=="exp2"&conditionC!=0))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_overall, exp ==
## "exp2" & conditionC != 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.61089 -0.16718 0.05496 0.19537 1.01152
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.24949 0.02821 -8.845 1.6e-15 ***
## conditionC 0.10824 0.05641 1.919 0.0568 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3589 on 160 degrees of freedom
## Multiple R-squared: 0.02249, Adjusted R-squared: 0.01638
## F-statistic: 3.682 on 1 and 160 DF, p-value: 0.0568
No Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#Non-Learnable vs. No Pre-Exposure
subj_overall$conditionNonLearnableNoPreExp <- ifelse(subj_overall$conditionC==0.5,1.5,
ifelse(subj_overall$conditionC==0,0.5,subj_overall$conditionC))
m <- lm(c~conditionNonLearnableNoPreExp,data=subset(subj_overall,exp=="exp2"&conditionNonLearnableNoPreExp!=1.5))
summary(m)
##
## Call:
## lm(formula = c ~ conditionNonLearnableNoPreExp, data = subset(subj_overall,
## exp == "exp2" & conditionNonLearnableNoPreExp != 1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.63271 -0.16055 0.01839 0.23236 1.02369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.29271 0.03394 -8.624 6.44e-15 ***
## conditionNonLearnableNoPreExp 0.02182 0.06788 0.321 0.748
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4293 on 158 degrees of freedom
## Multiple R-squared: 0.0006532, Adjusted R-squared: -0.005672
## F-statistic: 0.1033 on 1 and 158 DF, p-value: 0.7484
Learnable Pre-Exposure vs. No Pre-Exposure Condition
#No Pre-Exposure vs. Learnable
subj_overall$conditionLearnableNoPreExp <- ifelse(subj_overall$conditionC==-0.5,-1.5,
ifelse(subj_overall$conditionC==0,-0.5,subj_overall$conditionC))
m <- lm(c~conditionLearnableNoPreExp,data=subset(subj_overall,exp=="exp2"&conditionLearnableNoPreExp!=-1.5))
summary(m)
##
## Call:
## lm(formula = c ~ conditionLearnableNoPreExp, data = subset(subj_overall,
## exp == "exp2" & conditionLearnableNoPreExp != -1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.63271 -0.16921 0.05426 0.20754 1.02369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.23858 0.03271 -7.294 1.26e-11 ***
## conditionLearnableNoPreExp 0.08643 0.06542 1.321 0.188
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4188 on 162 degrees of freedom
## Multiple R-squared: 0.01066, Adjusted R-squared: 0.004553
## F-statistic: 1.746 on 1 and 162 DF, p-value: 0.1883
Testing against chance: Learnable Pre-Exposure
#Learnable
m <- lm(c~1,data=subset(subj_overall,exp=="exp2"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.02527 -0.16921 0.05426 0.19537 1.01152
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.19537 0.03824 -5.108 2.08e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3484 on 82 degrees of freedom
Testing against chance: No Pre-Exposure
m <- lm(c~1,data=subset(subj_overall,exp=="exp2"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.63271 -0.20191 -0.00042 0.28180 1.02369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.28180 0.05338 -5.279 1.09e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4804 on 80 degrees of freedom
Testing against chance: Non-Learnable Pre-Exposure
m <- lm(c~1,data=subset(subj_overall,exp=="exp2"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp2" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.61089 -0.14041 0.08825 0.22831 0.66820
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.30361 0.04158 -7.301 2.09e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3696 on 78 degrees of freedom
Condition Effect
#overall analysis (condition dummy-coded)
m <- lm(c~condition,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = c ~ condition, data = subset(subj_testType, exp ==
## "exp2" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.18484 -0.25249 0.09588 0.33304 1.09775
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.40838 0.05008 -8.154 1.96e-14
## conditionNo Pre-Exposure -0.23716 0.07127 -3.328 0.00101
## conditionNon-Learnable Pre-Exposure -0.16481 0.07172 -2.298 0.02243
##
## (Intercept) ***
## conditionNo Pre-Exposure **
## conditionNon-Learnable Pre-Exposure *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4563 on 240 degrees of freedom
## Multiple R-squared: 0.04632, Adjusted R-squared: 0.03837
## F-statistic: 5.828 on 2 and 240 DF, p-value: 0.003376
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: c
## Sum Sq Df F value Pr(>F)
## (Intercept) 13.842 1 66.4859 1.964e-14 ***
## condition 2.427 2 5.8281 0.003376 **
## Residuals 49.968 240
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Response bias differs across conditions.
Pairwise comparisons: Learnable Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#compare conditions
#Learnable vs. Non-Learnable
m <- lm(c~conditionC,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC!=0))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_testType, exp ==
## "exp2" & testType == "familiarX" & conditionC != 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1848 -0.2372 0.1232 0.2880 0.8226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.49079 0.03425 -14.328 <2e-16 ***
## conditionC 0.16481 0.06851 2.406 0.0173 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4359 on 160 degrees of freedom
## Multiple R-squared: 0.03491, Adjusted R-squared: 0.02888
## F-statistic: 5.787 on 1 and 160 DF, p-value: 0.01728
No Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#Non-Learnable vs. No Pre-Exposure
subj_testType$conditionNonLearnableNoPreExp <- ifelse(subj_testType$conditionC==0.5,1.5,
ifelse(subj_testType$conditionC==0,0.5,subj_testType$conditionC))
m <- lm(c~conditionNonLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionNonLearnableNoPreExp!=1.5))
summary(m)
##
## Call:
## lm(formula = c ~ conditionNonLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX" & conditionNonLearnableNoPreExp !=
## 1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.02003 -0.25249 0.07645 0.36032 1.09775
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.60937 0.03793 -16.067 <2e-16 ***
## conditionNonLearnableNoPreExp -0.07235 0.07585 -0.954 0.342
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4797 on 158 degrees of freedom
## Multiple R-squared: 0.005724, Adjusted R-squared: -0.0005685
## F-statistic: 0.9097 on 1 and 158 DF, p-value: 0.3417
Learnable Pre-Exposure vs. No Pre-Exposure Condition
#No Pre-Exposure vs. Learnable
subj_testType$conditionLearnableNoPreExp <- ifelse(subj_testType$conditionC==-0.5,-1.5,
ifelse(subj_testType$conditionC==0,-0.5,subj_testType$conditionC))
m <- lm(c~conditionLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionLearnableNoPreExp!=-1.5))
summary(m)
##
## Call:
## lm(formula = c ~ conditionLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "familiarX" & conditionLearnableNoPreExp !=
## -1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.18484 -0.19723 0.04782 0.36032 1.09775
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.52696 0.03534 -14.909 < 2e-16 ***
## conditionLearnableNoPreExp 0.23716 0.07069 3.355 0.000989 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4526 on 162 degrees of freedom
## Multiple R-squared: 0.06497, Adjusted R-squared: 0.05919
## F-statistic: 11.26 on 1 and 162 DF, p-value: 0.0009888
Testing against chance: Learnable Pre-Exposure
m <- lm(c~1,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp2" &
## testType == "familiarX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.18484 -0.18934 0.09588 0.26287 0.82264
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.40838 0.04472 -9.132 3.93e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4074 on 82 degrees of freedom
Testing against chance: No Pre-Exposure
m <- lm(c~1,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp2" &
## testType == "familiarX" & conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.94768 -0.34714 0.04782 0.36032 1.09775
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.64554 0.05496 -11.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4946 on 80 degrees of freedom
Testing against chance: Non-Learnable Pre-Exposure
m <- lm(c~1,data=subset(subj_testType,exp=="exp2"&testType=="familiarX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp2" &
## testType == "familiarX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0200 -0.2525 0.1425 0.2880 0.7595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.57319 0.05219 -10.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4639 on 78 degrees of freedom
Condition Effect
#overall analysis (condition dummy-coded)
m <- lm(c~condition,data=subset(subj_testType,exp=="exp2"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = c ~ condition, data = subset(subj_testType, exp ==
## "exp2" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.67979 -0.27658 -0.08657 0.19622 1.64149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.003716 0.065549 0.057 0.955
## conditionNo Pre-Exposure 0.082851 0.093270 0.888 0.375
## conditionNon-Learnable Pre-Exposure -0.051984 0.093866 -0.554 0.580
##
## Residual standard error: 0.5972 on 240 degrees of freedom
## Multiple R-squared: 0.00859, Adjusted R-squared: 0.0003284
## F-statistic: 1.04 on 2 and 240 DF, p-value: 0.3551
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: c
## Sum Sq Df F value Pr(>F)
## (Intercept) 0.001 1 0.0032 0.9548
## condition 0.742 2 1.0397 0.3551
## Residuals 85.588 240
Pairwise comparisons: Learnable Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#compare conditions
#Learnable vs. Non-Learnable
m <- lm(c~conditionC,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC!=0))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_testType, exp ==
## "exp2" & testType == "novelX" & conditionC != 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.54495 -0.23695 -0.00372 0.19378 1.64149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.02228 0.03956 -0.563 0.574
## conditionC 0.05198 0.07912 0.657 0.512
##
## Residual standard error: 0.5034 on 160 degrees of freedom
## Multiple R-squared: 0.002691, Adjusted R-squared: -0.003543
## F-statistic: 0.4316 on 1 and 160 DF, p-value: 0.5121
No Pre-Exposure vs. Non-Learnable Pre-Exposure Condition
#Non-Learnable vs. No Pre-Exposure
subj_testType$conditionNonLearnableNoPreExp <- ifelse(subj_testType$conditionC==0.5,1.5,
ifelse(subj_testType$conditionC==0,0.5,subj_testType$conditionC))
m <- lm(c~conditionNonLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionNonLearnableNoPreExp!=1.5))
summary(m)
##
## Call:
## lm(formula = c ~ conditionNonLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX" & conditionNonLearnableNoPreExp !=
## 1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.67979 -0.28484 -0.08657 0.19378 1.64149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01915 0.05076 0.377 0.707
## conditionNonLearnableNoPreExp 0.13484 0.10152 1.328 0.186
##
## Residual standard error: 0.642 on 158 degrees of freedom
## Multiple R-squared: 0.01104, Adjusted R-squared: 0.004782
## F-statistic: 1.764 on 1 and 158 DF, p-value: 0.186
Learnable Pre-Exposure vs. No Pre-Exposure Condition
#No Pre-Exposure vs. Learnable
subj_testType$conditionLearnableNoPreExp <- ifelse(subj_testType$conditionC==-0.5,-1.5,
ifelse(subj_testType$conditionC==0,-0.5,subj_testType$conditionC))
m <- lm(c~conditionLearnableNoPreExp,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionLearnableNoPreExp!=-1.5))
summary(m)
##
## Call:
## lm(formula = c ~ conditionLearnableNoPreExp, data = subset(subj_testType,
## exp == "exp2" & testType == "novelX" & conditionLearnableNoPreExp !=
## -1.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.67979 -0.33011 -0.08657 0.20505 1.58950
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04514 0.04966 0.909 0.365
## conditionLearnableNoPreExp -0.08285 0.09932 -0.834 0.405
##
## Residual standard error: 0.6359 on 162 degrees of freedom
## Multiple R-squared: 0.004277, Adjusted R-squared: -0.001869
## F-statistic: 0.6959 on 1 and 162 DF, p-value: 0.4054
Testing against chance: Learnable Pre-Exposure
m <- lm(c~1,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp2" &
## testType == "novelX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.41065 -0.23947 -0.00372 0.22923 1.58950
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.003716 0.054831 0.068 0.946
##
## Residual standard error: 0.4995 on 82 degrees of freedom
Testing against chance: No Pre-Exposure
m <- lm(c~1,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC==0))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp2" &
## testType == "novelX" & conditionC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.67979 -0.37178 -0.08657 0.19865 1.50665
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.08657 0.08337 1.038 0.302
##
## Residual standard error: 0.7504 on 80 degrees of freedom
Testing against chance: Non-Learnable Pre-Exposure
m <- lm(c~1,data=subset(subj_testType,exp=="exp2"&testType=="novelX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp2" &
## testType == "novelX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.54495 -0.23695 -0.09144 0.19088 1.64149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04827 0.05709 -0.846 0.4
##
## Residual standard error: 0.5074 on 78 degrees of freedom
#recode test type
subj_testType$testTypeC <- ifelse(subj_testType$testType=="novelX",0.5,
ifelse(subj_testType$testType=="familiarX",-0.5,NA))
m <- lm(c~condition*testTypeC,data=subset(subj_testType,exp=="exp2"))
summary(m)
##
## Call:
## lm(formula = c ~ condition * testTypeC, data = subset(subj_testType,
## exp == "exp2"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.67979 -0.26156 -0.00372 0.28150 1.64149
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.20233 0.04125 -4.905
## conditionNo Pre-Exposure -0.07715 0.05869 -1.315
## conditionNon-Learnable Pre-Exposure -0.10840 0.05906 -1.835
## testTypeC 0.41210 0.08249 4.996
## conditionNo Pre-Exposure:testTypeC 0.32001 0.11738 2.726
## conditionNon-Learnable Pre-Exposure:testTypeC 0.11283 0.11813 0.955
## Pr(>|t|)
## (Intercept) 1.28e-06 ***
## conditionNo Pre-Exposure 0.18928
## conditionNon-Learnable Pre-Exposure 0.06709 .
## testTypeC 8.23e-07 ***
## conditionNo Pre-Exposure:testTypeC 0.00664 **
## conditionNon-Learnable Pre-Exposure:testTypeC 0.34000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5314 on 480 degrees of freedom
## Multiple R-squared: 0.2307, Adjusted R-squared: 0.2227
## F-statistic: 28.79 on 5 and 480 DF, p-value: < 2.2e-16
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: c
## Sum Sq Df F value Pr(>F)
## (Intercept) 6.796 1 24.0638 1.278e-06 ***
## condition 1.015 2 1.7969 0.16693
## testTypeC 7.048 1 24.9557 8.230e-07 ***
## condition:testTypeC 2.154 2 3.8127 0.02276 *
## Residuals 135.557 480
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Familiar X test
p1 <- ggplot(subset(test_type_exp,testType=="familiarX"&exp=="exp3"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="familiarX"&exp=="exp3"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=16)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Unstructured Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Unstructured\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#4DAF4A","#54278f"))+
scale_color_manual(values=c("#4DAF4A","#54278f"))+
theme(legend.position="none")+
ylab("Accuracy - Familiar X Test")+
xlab("Condition")
#Novel X
p2 <- ggplot(subset(test_type_exp,testType=="novelX"&exp=="exp3"),aes(condition,accuracy,fill=condition,color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="novelX"&exp=="exp3"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=16)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Unstructured Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Unstructured\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#4DAF4A","#54278f"))+
scale_color_manual(values=c("#4DAF4A","#54278f"))+
theme(legend.position="none")+
ylab("Accuracy - Novel X Test")+
xlab("Condition")
plot_grid(p1,p2, labels=c("A","B"),label_size=18)
overall_exp %>%
filter(exp=="exp3") %>%
select(-c(se, accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
exp | condition | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|
exp3 | Learnable Pre-Exposure | 90 | 0.6157407 | 0.5761732 | 0.6553082 | 0.7932834 | 0.5051798 | 1.0813870 | -0.1471900 | -0.2255496 | -0.06883044 |
exp3 | Unstructured Pre-Exposure | 89 | 0.5355805 | 0.5085204 | 0.5626406 | 0.2401722 | 0.0604255 | 0.4199189 | -0.1638137 | -0.2497717 | -0.07785573 |
test_type_exp %>%
filter(exp=="exp3") %>%
select(-c(se, accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
exp | condition | testType | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|---|
exp3 | Learnable Pre-Exposure | familiarX | 90 | 0.6197531 | 0.5787377 | 0.6607685 | 0.7360229 | 0.48172951 | 0.9903163 | -0.3575601 | -0.45300126 | -0.2621189 |
exp3 | Learnable Pre-Exposure | novelX | 90 | 0.6117284 | 0.5682435 | 0.6552133 | 0.6917028 | 0.41857251 | 0.9648331 | 0.0653921 | -0.04610090 | 0.1768851 |
exp3 | Unstructured Pre-Exposure | familiarX | 89 | 0.5380774 | 0.5053266 | 0.5708282 | 0.2373254 | 0.03843109 | 0.4362197 | -0.4554699 | -0.55536408 | -0.3555757 |
exp3 | Unstructured Pre-Exposure | novelX | 89 | 0.5330836 | 0.5043785 | 0.5617888 | 0.2000827 | 0.02878172 | 0.3713837 | 0.1334533 | -0.01092315 | 0.2778297 |
##Correlations between Familiar X and Novel X
c <- corr.test(subset(subj_accuracy_wide, condition=="Learnable Pre-Exposure" & exp=="exp3")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Learnable Pre-Exposure" &
## exp == "exp3")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.75
## familiarX 0.75 1.00
## Sample Size
## [1] 90
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0 0
## familiarX 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.000000e+00 9.870517e-18
## familiarX 9.870517e-18 0.000000e+00
c <- corr.test(subset(subj_accuracy_wide, condition=="Unstructured Pre-Exposure" & exp=="exp3")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, condition == "Unstructured Pre-Exposure" &
## exp == "exp3")[, c("novelX", "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.00 0.55
## familiarX 0.55 1.00
## Sample Size
## [1] 89
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0 0
## familiarX 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.000000e+00 2.524806e-08
## familiarX 2.524806e-08 0.000000e+00
m <- lm(novelX~familiarX*condition, subset(subj_accuracy_wide,exp=="exp3"))
summary(m)
##
## Call:
## lm(formula = novelX ~ familiarX * condition, data = subset(subj_accuracy_wide,
## exp == "exp3"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33799 -0.08303 0.01198 0.07857 0.36172
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.11638 0.04446 2.618
## familiarX 0.79926 0.06844 11.679
## conditionUnstructured Pre-Exposure 0.15775 0.06582 2.397
## familiarX:conditionUnstructured Pre-Exposure -0.31801 0.11045 -2.879
## Pr(>|t|)
## (Intercept) 0.00963 **
## familiarX < 2e-16 ***
## conditionUnstructured Pre-Exposure 0.01759 *
## familiarX:conditionUnstructured Pre-Exposure 0.00448 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1264 on 175 degrees of freedom
## Multiple R-squared: 0.5132, Adjusted R-squared: 0.5049
## F-statistic: 61.51 on 3 and 175 DF, p-value: < 2.2e-16
ggplot(subset(subj_accuracy_wide,exp=="exp3"),aes(familiarX,novelX, color=condition,linetype=condition,shape=condition))+
geom_jitter(width=0.02,height=0.02,size=3)+
geom_smooth(method=lm,se =F,size=1.5)+
scale_color_manual(name="Condition",values=c("#4DAF4A","#54278f"))+
scale_linetype_manual(name="Condition",values=c(1,5))+
scale_shape_manual(name="Condition",values=c(16,18))+
ylab("Accuracy - Novel X")+
xlab("Accuracy - Familiar X")+
theme_classic(base_size=18)+
theme(legend.position=c(0.3,0.9))
The final model with the maximal random effects structure that still allowed the model to converge.
#recode condition
d$conditionC <- ifelse(d$condition=="Learnable Pre-Exposure",0.5,
ifelse(d$condition=="Unstructured Pre-Exposure",-0.5,NA))
##all data
m <- glmer(isRight~conditionC+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp3")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 8420.2 8447.2 -4206.1 8412.2 6440
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0204 -1.0153 0.3568 0.9141 1.4900
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.600740 0.77507
## stimulus (Intercept) 0.004486 0.06697
## Number of obs: 6444, groups: participantCode, 179; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.3848 0.0655 5.876 4.21e-09 ***
## conditionC 0.4254 0.1285 3.309 0.000935 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.019
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.2564603 0.5131961
## conditionC 0.1734409 0.6772993
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
#maximal model
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp3"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp3")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 8423.4 8464.0 -4205.7 8411.4 6438
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0103 -1.0155 0.3546 0.9121 1.5246
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.601095 0.77530
## stimulus (Intercept) 0.006028 0.07764
## conditionC 0.005060 0.07113 -1.00
## Number of obs: 6444, groups: participantCode, 179; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.38485 0.06584 5.845 5.06e-09 ***
## conditionC 0.42487 0.12913 3.290 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.001
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.2558063 0.5138941
## conditionC 0.1717902 0.6779561
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="exp3"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data: subset(d, exp == "exp3" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 4271.3 4289.5 -2132.7 4265.3 3219
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1365 -1.0299 0.4681 0.9022 1.3070
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.4302 0.6559
## Number of obs: 3222, groups: participantCode, 179
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36486 0.06222 5.864 4.52e-09 ***
## conditionC 0.38408 0.12387 3.101 0.00193 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.018
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.2429110 0.4868076
## conditionC 0.1412912 0.6268640
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
#maximal model
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp3"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa")) #convergence warning
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp3" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 4277.3 4313.8 -2132.7 4265.3 3216
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1365 -1.0299 0.4681 0.9022 1.3070
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 4.302e-01 6.559e-01
## stimulus (Intercept) 2.777e-12 1.666e-06
## conditionC 8.156e-12 2.856e-06 -1.00
## Number of obs: 3222, groups: participantCode, 179; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.36486 0.06222 5.864 4.52e-09 ***
## conditionC 0.38408 0.12387 3.101 0.00193 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.018
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.2429104 0.4868084
## conditionC 0.1412901 0.6268634
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp3"&testType=="familiarX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data:
## subset(d, exp == "exp3" & testType == "familiarX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2064.3 2075.1 -1030.2 2060.3 1618
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4478 -0.9814 0.4085 0.7845 1.3262
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.76 0.8718
## Number of obs: 1620, groups: participantCode, 90
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5939 0.1090 5.45 5.04e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.3803136 0.8074874
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"&testType=="familiarX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data:
## subset(d, exp == "exp3" & testType == "familiarX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2066.3 2082.5 -1030.2 2060.3 1617
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4478 -0.9814 0.4085 0.7845 1.3262
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.76 0.8718
## stimulus (Intercept) 0.00 0.0000
## Number of obs: 1620, groups: participantCode, 90; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5939 0.1090 5.45 5.04e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.3803169 0.8074857
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp3"&testType=="familiarX"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data:
## subset(d, exp == "exp3" & testType == "familiarX" & conditionC ==
## -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2197.9 2208.7 -1097.0 2193.9 1600
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6037 -1.0443 0.6236 0.9092 1.1787
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1937 0.4401
## Number of obs: 1602, groups: participantCode, 89
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.16208 0.06942 2.335 0.0195 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.02602679 0.2981361
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"&testType=="familiarX"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data:
## subset(d, exp == "exp3" & testType == "familiarX" & conditionC ==
## -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2199.9 2216.1 -1097.0 2193.9 1599
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6037 -1.0443 0.6236 0.9092 1.1787
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.1937 0.4401
## stimulus (Intercept) 0.0000 0.0000
## Number of obs: 1602, groups: participantCode, 89; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.16208 0.06942 2.335 0.0195 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.02602678 0.2981357
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~conditionC+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp3" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 4288.8 4313.1 -2140.4 4280.8 3218
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1169 -1.0178 0.4405 0.9043 1.6234
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.4370 0.6610
## stimulus (Intercept) 0.0136 0.1166
## Number of obs: 3222, groups: participantCode, 179; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.33919 0.06834 4.963 6.93e-07 ***
## conditionC 0.38311 0.12467 3.073 0.00212 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.022
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.2052465 0.4731307
## conditionC 0.1387632 0.6274558
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp3"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data: subset(d, exp == "exp3" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 4292.1 4328.5 -2140.0 4280.1 3216
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1229 -1.0235 0.4378 0.9032 1.6613
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 0.43693 0.66101
## stimulus (Intercept) 0.01427 0.11945
## conditionC 0.00701 0.08373 -1.00
## Number of obs: 3222, groups: participantCode, 179; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.33901 0.06862 4.941 7.78e-07 ***
## conditionC 0.38201 0.12623 3.026 0.00248 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC -0.043
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.2045242 0.4734924
## conditionC 0.1345932 0.6294225
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="exp3"&testType=="novelX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "exp3" & testType == "novelX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2046.6 2057.4 -1021.3 2042.6 1618
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6331 -0.9616 0.3150 0.8649 1.3816
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.051 1.025
## Number of obs: 1620, groups: participantCode, 90
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6025 0.1246 4.834 1.34e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.3582096 0.846745
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution (though the parameter estimates and test statistics are highly similar to the converging model).
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"&testType=="novelX"&conditionC==0.5),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp3" & testType == "novelX" & conditionC ==
## 0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2048.6 2064.8 -1021.3 2042.6 1617
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6332 -0.9616 0.3150 0.8649 1.3816
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.051 1.025
## stimulus (Intercept) 0.000 0.000
## Number of obs: 1620, groups: participantCode, 90; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6025 0.1246 4.834 1.34e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.3582252 0.8468066
The final model with the maximal random effects structure that still allowed the model to converge, as reported in the manuscript.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"&testType=="novelX"&conditionC==-0.5),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "exp3" & testType == "novelX" & conditionC ==
## -0.5)
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2214.6 2230.8 -1104.3 2208.6 1599
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3338 -1.0401 0.7710 0.9299 1.1929
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.08077 0.2842
## stimulus (Intercept) 0.01810 0.1346
## Number of obs: 1602, groups: participantCode, 89; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.13604 0.06698 2.031 0.0422 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.004761652 0.2673123
The final model with the maximal random effects structure that still allowed the model to converge.
#recode test type
d$testTypeC <- ifelse(d$testType=="novelX",0.5,
ifelse(d$testType=="familiarX",-0.5,NA))
##all data
m <- glmer(isRight~conditionC*testTypeC+(1|participantCode)+(1|stimulus),data=subset(d,exp=="exp3"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC * testTypeC + (1 | participantCode) + (1 |
## stimulus)
## Data: subset(d, exp == "exp3")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 8423.9 8464.5 -4205.9 8411.9 6438
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0446 -1.0163 0.3558 0.9145 1.4950
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.60076 0.77509
## stimulus (Intercept) 0.00426 0.06527
## Number of obs: 6444, groups: participantCode, 179; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.38483 0.06545 5.880 4.11e-09 ***
## conditionC 0.42539 0.12854 3.309 0.000935 ***
## testTypeC -0.02990 0.05730 -0.522 0.601772
## conditionC:testTypeC -0.01681 0.10602 -0.159 0.874005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC tstTyC
## conditionC 0.019
## testTypeC -0.001 -0.001
## cndtnC:tsTC -0.001 -0.001 0.041
confint(m, method="Wald")[3:6,]
## 2.5 % 97.5 %
## (Intercept) 0.2565559 0.51311242
## conditionC 0.1734545 0.67732689
## testTypeC -0.1422117 0.08240574
## conditionC:testTypeC -0.2246079 0.19098383
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
m <- glmer(isRight~conditionC*testTypeC+(1+testTypeC|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="exp3"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## isRight ~ conditionC * testTypeC + (1 + testTypeC | participantCode) +
## (1 + conditionC | stimulus)
## Data: subset(d, exp == "exp3")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 8431.0 8498.8 -4205.5 8411.0 6434
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0524 -1.0177 0.3537 0.9142 1.5229
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 6.011e-01 0.775307
## testTypeC 9.903e-05 0.009951 -1.00
## stimulus (Intercept) 5.873e-03 0.076637
## conditionC 5.111e-03 0.071495 -1.00
## Number of obs: 6444, groups: participantCode, 179; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.38486 0.06581 5.848 4.97e-09 ***
## conditionC 0.42483 0.12913 3.290 0.001 **
## testTypeC -0.03192 0.06093 -0.524 0.600
## conditionC:testTypeC -0.01920 0.11031 -0.174 0.862
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnC tstTyC
## conditionC 0.001
## testTypeC -0.013 0.000
## cndtnC:tsTC -0.001 -0.013 -0.010
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[7:10,]
## 2.5 % 97.5 %
## (Intercept) 0.2558836 0.51384564
## conditionC 0.1717295 0.67792630
## testTypeC -0.1513293 0.08749837
## conditionC:testTypeC -0.2354027 0.19701156
#recode condition
subj_overall$conditionC <- ifelse(subj_overall$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_overall$condition=="Unstructured Pre-Exposure",-0.5,NA))
##all data
m <- lm(dprime~conditionC,data=subset(subj_overall,exp=="exp3"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_overall,
## exp == "exp3"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8135 -0.6835 -0.2402 0.1862 3.5888
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.51673 0.08566 6.032 9.21e-09 ***
## conditionC 0.55311 0.17132 3.229 0.00148 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.146 on 177 degrees of freedom
## Multiple R-squared: 0.05561, Adjusted R-squared: 0.05028
## F-statistic: 10.42 on 1 and 177 DF, p-value: 0.001483
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp3"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp3" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8135 -0.7933 -0.6345 0.1980 3.0357
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7933 0.1450 5.471 4.07e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.376 on 89 degrees of freedom
m <- lm(dprime~1,data=subset(subj_overall,exp=="exp3"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "exp3" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4356 -0.3827 -0.1005 0.1818 3.5888
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24017 0.09045 2.655 0.0094 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8533 on 88 degrees of freedom
#recode condition
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Unstructured Pre-Exposure",-0.5,NA))
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp3"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp3" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9315 -0.7360 -0.2373 0.3877 2.9491
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48667 0.08135 5.983 1.19e-08 ***
## conditionC 0.49870 0.16269 3.065 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.088 on 177 degrees of freedom
## Multiple R-squared: 0.05041, Adjusted R-squared: 0.04504
## F-statistic: 9.396 on 1 and 177 DF, p-value: 0.002515
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp3"&testType=="familiarX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp3" & testType == "familiarX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9315 -0.7360 -0.3218 0.3867 2.4504
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.736 0.128 5.751 1.23e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.214 on 89 degrees of freedom
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp3"&testType=="familiarX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp3" & testType == "familiarX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4328 -0.5713 -0.2373 0.3877 2.9491
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2373 0.1001 2.371 0.0199 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9442 on 88 degrees of freedom
m <- lm(dprime~conditionC,data=subset(subj_testType,exp=="exp3"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## exp == "exp3" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1854 -0.6917 -0.2001 0.3704 2.9863
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.44589 0.08133 5.483 1.43e-07 ***
## conditionC 0.49162 0.16265 3.023 0.00288 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.088 on 177 degrees of freedom
## Multiple R-squared: 0.04908, Adjusted R-squared: 0.04371
## F-statistic: 9.136 on 1 and 177 DF, p-value: 0.002879
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp3"&testType=="novelX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp3" & testType == "novelX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0520 -0.9798 -0.5520 0.5037 2.4947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6917 0.1375 5.032 2.51e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.304 on 89 degrees of freedom
m <- lm(dprime~1,data=subset(subj_testType,exp=="exp3"&testType=="novelX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "exp3" & testType == "novelX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1854 -0.4911 -0.2001 0.2559 2.9863
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2001 0.0862 2.321 0.0226 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8132 on 88 degrees of freedom
#recode test type
subj_testType$testTypeC <- ifelse(subj_testType$testType=="novelX",0.5,
ifelse(subj_testType$testType=="familiarX",-0.5,NA))
m <- lm(dprime~conditionC*testTypeC,data=subset(subj_testType,exp=="exp3"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC * testTypeC, data = subset(subj_testType,
## exp == "exp3"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1854 -0.7360 -0.2001 0.3704 2.9863
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.466283 0.057513 8.107 8.54e-15 ***
## conditionC 0.495159 0.115027 4.305 2.17e-05 ***
## testTypeC -0.040781 0.115027 -0.355 0.723
## conditionC:testTypeC -0.007077 0.230053 -0.031 0.975
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.088 on 354 degrees of freedom
## Multiple R-squared: 0.05007, Adjusted R-squared: 0.04202
## F-statistic: 6.219 on 3 and 354 DF, p-value: 0.0003985
#recode condition
subj_overall$conditionC <- ifelse(subj_overall$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_overall$condition=="Unstructured Pre-Exposure",-0.5,NA))
##all data
m <- lm(c~conditionC,data=subset(subj_overall,exp=="exp3"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_overall, exp ==
## "exp3"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7673 -0.1365 0.0241 0.2215 0.9152
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15550 0.02925 -5.316 3.17e-07 ***
## conditionC 0.01662 0.05850 0.284 0.777
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3914 on 177 degrees of freedom
## Multiple R-squared: 0.0004559, Adjusted R-squared: -0.005191
## F-statistic: 0.08074 on 1 and 177 DF, p-value: 0.7766
m <- lm(c~1,data=subset(subj_overall,exp=="exp3"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp3" &
## conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.76732 -0.13803 0.07258 0.21705 0.74491
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.14719 0.03944 -3.732 0.000334 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3741 on 89 degrees of freedom
m <- lm(c~1,data=subset(subj_overall,exp=="exp3"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_overall, exp == "exp3" &
## conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.59005 -0.13091 0.02271 0.23507 0.91524
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.16381 0.04325 -3.787 0.000278 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4081 on 88 degrees of freedom
#recode condition
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure",0.5,
ifelse(subj_testType$condition=="Unstructured Pre-Exposure",-0.5,NA))
m <- lm(c~conditionC,data=subset(subj_testType,exp=="exp3"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_testType, exp ==
## "exp3" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23566 -0.22471 0.07234 0.35756 0.78829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.40651 0.03476 -11.696 <2e-16 ***
## conditionC 0.09791 0.06951 1.409 0.161
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.465 on 177 degrees of freedom
## Multiple R-squared: 0.01108, Adjusted R-squared: 0.005498
## F-statistic: 1.984 on 1 and 177 DF, p-value: 0.1607
m <- lm(c~1,data=subset(subj_testType,exp=="exp3"&testType=="familiarX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp3" &
## testType == "familiarX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23566 -0.19143 0.07234 0.35756 0.78829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.35756 0.04803 -7.444 5.92e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4557 on 89 degrees of freedom
m <- lm(c~1,data=subset(subj_testType,exp=="exp3"&testType=="familiarX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp3" &
## testType == "familiarX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1378 -0.2247 0.1430 0.3158 0.6834
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.45547 0.05027 -9.061 3.07e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4742 on 88 degrees of freedom
m <- lm(c~conditionC,data=subset(subj_testType,exp=="exp3"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC, data = subset(subj_testType, exp ==
## "exp3" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.65861 -0.29336 -0.06539 0.21983 1.52783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09942 0.04583 2.169 0.0314 *
## conditionC -0.06806 0.09167 -0.742 0.4588
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6132 on 177 degrees of freedom
## Multiple R-squared: 0.003105, Adjusted R-squared: -0.002527
## F-statistic: 0.5513 on 1 and 177 DF, p-value: 0.4588
m <- lm(c~1,data=subset(subj_testType,exp=="exp3"&testType=="novelX"&conditionC==0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp3" &
## testType == "novelX" & conditionC == 0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.65861 -0.23238 -0.06539 0.21983 1.52783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06539 0.05611 1.165 0.247
##
## Residual standard error: 0.5323 on 89 degrees of freedom
m <- lm(c~1,data=subset(subj_testType,exp=="exp3"&testType=="novelX"&conditionC==-0.5))
summary(m)
##
## Call:
## lm(formula = c ~ 1, data = subset(subj_testType, exp == "exp3" &
## testType == "novelX" & conditionC == -0.5))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5404 -0.4187 -0.1335 0.1518 1.4598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13345 0.07265 1.837 0.0696 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6854 on 88 degrees of freedom
m <- lm(c~conditionC*testTypeC,data=subset(subj_testType,exp=="exp3"))
summary(m)
##
## Call:
## lm(formula = c ~ conditionC * testTypeC, data = subset(subj_testType,
## exp == "exp3"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.65861 -0.27316 0.00626 0.31431 1.52783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15355 0.02876 -5.339 1.68e-07 ***
## conditionC 0.01492 0.05752 0.259 0.795
## testTypeC 0.50594 0.05752 8.796 < 2e-16 ***
## conditionC:testTypeC -0.16597 0.11504 -1.443 0.150
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5442 on 354 degrees of freedom
## Multiple R-squared: 0.1832, Adjusted R-squared: 0.1762
## F-statistic: 26.46 on 3 and 354 DF, p-value: 1.833e-15
Much larger response bias for familiar X trials compared to novel X trials.
#Familiar X test
p1 <- ggplot(subset(test_type,testType=="familiarX"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="familiarX"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, height=0.02, size=0.8)+
theme_classic(base_size=11)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Non-Learnable\nPre-Exposure","No\n Pre-Exposure","Unstructured\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#E41A1C","#377EB8","#54278f","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
scale_color_manual(values=c("#E41A1C","#377EB8","#54278f","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
theme(legend.position="none")+
ylab("Accuracy - Familiar X Test")+
xlab("Condition")
#Novel X
p2 <- ggplot(subset(test_type,testType=="novelX"),aes(condition,accuracy,fill=condition,color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="novelX"),aes(y=acc), width = 0.05, height=0.02, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=11)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"),
labels=c("Non-Learnable\nPre-Exposure","No\n Pre-Exposure","Unstructured\nPre-Exposure","Learnable\nPre-Exposure"),
limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
scale_fill_manual(values=c("#E41A1C","#377EB8","#54278f","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
scale_color_manual(values=c("#E41A1C","#377EB8","#54278f","#4DAF4A"),limits=c("Non-Learnable Pre-Exposure","No Pre-Exposure","Unstructured Pre-Exposure","Learnable Pre-Exposure"))+
theme(legend.position="none")+
ylab("Accuracy - Novel X Test")+
xlab("Condition")
plot_grid(p1,p2, labels=c("A","B"),label_size=18)
overall %>%
select(-c(se, accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
condition | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|
Learnable Pre-Exposure | 205 | 0.5987566 | 0.5738617 | 0.6236514 | 0.6815562 | 0.50340886 | 0.8597035 | -0.1705878 | -0.2199460 | -0.12122966 |
Learnable Pre-Exposure Only | 48 | 0.6464120 | 0.5870300 | 0.7057941 | 1.0119951 | 0.57692063 | 1.4470695 | -0.2476500 | -0.3558765 | -0.13942359 |
No Pre-Exposure | 81 | 0.5445816 | 0.5165071 | 0.5726561 | 0.2917437 | 0.09294647 | 0.4905409 | -0.2817981 | -0.3880251 | -0.17557112 |
Non-Learnable Pre-Exposure | 114 | 0.5268031 | 0.5088965 | 0.5447098 | 0.1744142 | 0.05828405 | 0.2905444 | -0.3033881 | -0.3800089 | -0.22676727 |
Unstructured Pre-Exposure | 89 | 0.5355805 | 0.5085204 | 0.5626406 | 0.2401722 | 0.06042550 | 0.4199189 | -0.1638137 | -0.2497717 | -0.07785573 |
test_type %>%
select(-c(se, accuracy_ci,d_prime_ci,c_bias_ci)) %>%
formattable()
condition | testType | N | accuracy | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|
Learnable Pre-Exposure | familiarX | 205 | 0.6032520 | 0.5769629 | 0.6295412 | 0.6375685 | 0.474275807 | 0.8008612 | -0.36106697 | -0.42235755 | -0.299776379 |
Learnable Pre-Exposure | novelX | 205 | 0.5942073 | 0.5668629 | 0.6215517 | 0.5840781 | 0.414323524 | 0.7538328 | 0.01628288 | -0.05174899 | 0.084314749 |
Learnable Pre-Exposure Only | familiarX | 48 | 0.6412037 | 0.5770248 | 0.7053826 | 0.8763520 | 0.476210917 | 1.2764931 | -0.37304689 | -0.49147685 | -0.254616937 |
Learnable Pre-Exposure Only | novelX | 48 | 0.6516204 | 0.5906462 | 0.7125946 | 0.9315712 | 0.553606822 | 1.3095356 | -0.11367134 | -0.22191307 | -0.005429604 |
No Pre-Exposure | familiarX | 81 | 0.5480110 | 0.5164667 | 0.5795553 | 0.2995076 | 0.101032689 | 0.4979825 | -0.64553887 | -0.75491277 | -0.536164973 |
No Pre-Exposure | novelX | 81 | 0.5411523 | 0.5100279 | 0.5722766 | 0.2466637 | 0.058929824 | 0.4343976 | 0.08656619 | -0.07935325 | 0.252485632 |
Non-Learnable Pre-Exposure | familiarX | 114 | 0.5253411 | 0.5028839 | 0.5477983 | 0.1448369 | 0.008158158 | 0.2815156 | -0.54211863 | -0.62796874 | -0.456268514 |
Non-Learnable Pre-Exposure | novelX | 114 | 0.5282651 | 0.5050216 | 0.5515086 | 0.1731961 | 0.038864646 | 0.3075276 | -0.06726700 | -0.16750917 | 0.032975169 |
Unstructured Pre-Exposure | familiarX | 89 | 0.5380774 | 0.5053266 | 0.5708282 | 0.2373254 | 0.038431089 | 0.4362197 | -0.45546991 | -0.55536408 | -0.355575746 |
Unstructured Pre-Exposure | novelX | 89 | 0.5330836 | 0.5043785 | 0.5617888 | 0.2000827 | 0.028781716 | 0.3713837 | 0.13345328 | -0.01092315 | 0.277829719 |
The final model with the maximal random effects structure that still allowed the model to converge.
Condition dummy-coded - Learnable Pre-Exposure condition is the reference level.
m <- glmer(isRight~condition+(1|participantCode),data=filter(d, condition!="Learnable Pre-Exposure Only"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ condition + (1 | participantCode)
## Data: filter(d, condition != "Learnable Pre-Exposure Only")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 23491.8 23530.6 -11740.9 23481.8 17597
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5857 -1.0185 0.4159 0.9080 1.4127
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.3866 0.6218
## Number of obs: 17602, groups: participantCode, 489
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.47568 0.05065 9.392 < 2e-16
## conditionNo Pre-Exposure -0.27030 0.09387 -2.880 0.003983
## conditionNon-Learnable Pre-Exposure -0.35704 0.08351 -4.276 1.91e-05
## conditionUnstructured Pre-Exposure -0.31147 0.09075 -3.432 0.000599
##
## (Intercept) ***
## conditionNo Pre-Exposure **
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cnNP-E cN-LP-
## cndtnNPr-Ex -0.537
## cndtnN-LP-E -0.605 0.325
## cndtnUnPr-E -0.556 0.299 0.337
Anova(m,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: isRight
## Chisq Df Pr(>Chisq)
## (Intercept) 88.203 1 < 2.2e-16 ***
## condition 24.080 3 2.403e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
#does not converge
m <- glmer(isRight~condition+(1|participantCode)+(1+condition|stimulus),data=filter(d, condition!="Learnable Pre-Exposure Only"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ condition + (1 | participantCode) + (1 + condition |
## stimulus)
## Data: filter(d, condition != "Learnable Pre-Exposure Only")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 23510.7 23627.3 -11740.3 23480.7 17587
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5927 -1.0172 0.4152 0.9123 1.4523
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 3.871e-01 0.622135
## stimulus (Intercept) 6.622e-05 0.008138
## conditionNo Pre-Exposure 7.993e-05 0.008940
## conditionNon-Learnable Pre-Exposure 3.363e-04 0.018338
## conditionUnstructured Pre-Exposure 9.815e-03 0.099071
## Corr
##
##
## 1.00
## 1.00 1.00
## 1.00 1.00 1.00
## Number of obs: 17602, groups: participantCode, 489; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.47575 0.05070 9.383 < 2e-16
## conditionNo Pre-Exposure -0.27033 0.09392 -2.878 0.003996
## conditionNon-Learnable Pre-Exposure -0.35708 0.08361 -4.271 1.95e-05
## conditionUnstructured Pre-Exposure -0.31115 0.09234 -3.370 0.000752
##
## (Intercept) ***
## conditionNo Pre-Exposure **
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cnNP-E cN-LP-
## cndtnNPr-Ex -0.537
## cndtnN-LP-E -0.604 0.326
## cndtnUnPr-E -0.542 0.297 0.338
## convergence code: 0
## boundary (singular) fit: see ?isSingular
Anova(m,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: isRight
## Chisq Df Pr(>Chisq)
## (Intercept) 88.040 1 < 2.2e-16 ***
## condition 23.799 3 2.752e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The final model with the maximal random effects structure that still allowed the model to converge.
Condition dummy-coded - Learnable Pre-Exposure condition is the reference level.
m <- glmer(isRight~condition+(1|participantCode)+(1|stimulus),data=filter(d, testType=="familiarX"&condition!="Learnable Pre-Exposure Only"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ condition + (1 | participantCode) + (1 | stimulus)
## Data:
## filter(d, testType == "familiarX" & condition != "Learnable Pre-Exposure Only")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11875.7 11918.2 -5931.8 11863.7 8796
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8964 -1.0379 0.5335 0.9006 1.4035
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2762752 0.52562
## stimulus (Intercept) 0.0007265 0.02695
## Number of obs: 8802, groups: participantCode, 489; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.45832 0.05136 8.924 < 2e-16
## conditionNo Pre-Exposure -0.25018 0.09445 -2.649 0.00808
## conditionNon-Learnable Pre-Exposure -0.34996 0.08405 -4.164 3.13e-05
## conditionUnstructured Pre-Exposure -0.29221 0.09141 -3.197 0.00139
##
## (Intercept) ***
## conditionNo Pre-Exposure **
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cnNP-E cN-LP-
## cndtnNPr-Ex -0.533
## cndtnN-LP-E -0.601 0.326
## cndtnUnPr-E -0.551 0.299 0.337
Anova(m,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: isRight
## Chisq Df Pr(>Chisq)
## (Intercept) 79.644 1 < 2.2e-16 ***
## condition 21.940 3 6.714e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
#does not converge
m <- glmer(isRight~condition+(1|participantCode)+(1+condition|stimulus),data=filter(d, testType=="familiarX"&condition!="Learnable Pre-Exposure Only"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ condition + (1 | participantCode) + (1 + condition |
## stimulus)
## Data:
## filter(d, testType == "familiarX" & condition != "Learnable Pre-Exposure Only")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11893.3 11999.5 -5931.6 11863.3 8787
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8953 -1.0359 0.5368 0.9006 1.4034
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2765631 0.52589
## stimulus (Intercept) 0.0002882 0.01698
## conditionNo Pre-Exposure 0.0028056 0.05297
## conditionNon-Learnable Pre-Exposure 0.0002372 0.01540
## conditionUnstructured Pre-Exposure 0.0033356 0.05776
## Corr
##
##
## 1.00
## 1.00 1.00
## 1.00 1.00 1.00
## Number of obs: 8802, groups: participantCode, 489; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.45831 0.05113 8.963 < 2e-16
## conditionNo Pre-Exposure -0.24999 0.09532 -2.623 0.00872
## conditionNon-Learnable Pre-Exposure -0.34994 0.08415 -4.158 3.2e-05
## conditionUnstructured Pre-Exposure -0.29203 0.09245 -3.159 0.00159
##
## (Intercept) ***
## conditionNo Pre-Exposure **
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cnNP-E cN-LP-
## cndtnNPr-Ex -0.521
## cndtnN-LP-E -0.600 0.328
## cndtnUnPr-E -0.536 0.312 0.339
## convergence code: 0
## boundary (singular) fit: see ?isSingular
Anova(m,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: isRight
## Chisq Df Pr(>Chisq)
## (Intercept) 80.344 1 < 2.2e-16 ***
## condition 21.625 3 7.807e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The final model with the maximal random effects structure that still allowed the model to converge.
Condition dummy-coded - Learnable Pre-Exposure condition is the reference level.
m <- glmer(isRight~condition+(1|participantCode),data=filter(d, testType=="novelX"&condition!="Learnable Pre-Exposure Only"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ condition + (1 | participantCode)
## Data:
## filter(d, testType == "novelX" & condition != "Learnable Pre-Exposure Only")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11896.2 11931.7 -5943.1 11886.2 8795
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8833 -1.0317 0.5301 0.9116 1.4208
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2853 0.5341
## Number of obs: 8800, groups: participantCode, 489
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.42193 0.05142 8.206 2.28e-16
## conditionNo Pre-Exposure -0.24356 0.09525 -2.557 0.010558
## conditionNon-Learnable Pre-Exposure -0.30163 0.08483 -3.556 0.000377
## conditionUnstructured Pre-Exposure -0.27919 0.09212 -3.031 0.002439
##
## (Intercept) ***
## conditionNo Pre-Exposure *
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cnNP-E cN-LP-
## cndtnNPr-Ex -0.538
## cndtnN-LP-E -0.605 0.326
## cndtnUnPr-E -0.557 0.300 0.337
Anova(m,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: isRight
## Chisq Df Pr(>Chisq)
## (Intercept) 67.341 1 2.284e-16 ***
## condition 17.616 3 0.0005278 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
##all data
#does not converge
m <- glmer(isRight~condition+(1|participantCode)+(1+condition|stimulus),data=filter(d, testType=="novelX"&condition!="Learnable Pre-Exposure Only"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ condition + (1 | participantCode) + (1 + condition |
## stimulus)
## Data:
## filter(d, testType == "novelX" & condition != "Learnable Pre-Exposure Only")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 11914.8 12021.0 -5942.4 11884.8 8785
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8845 -1.0302 0.5306 0.9117 1.5052
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.2860806 0.53487
## stimulus (Intercept) 0.0000000 0.00000
## conditionNo Pre-Exposure 0.0001722 0.01312
## conditionNon-Learnable Pre-Exposure 0.0002414 0.01554
## conditionUnstructured Pre-Exposure 0.0219312 0.14809
## Corr
##
##
## NaN
## NaN -1.00
## NaN -1.00 1.00
## Number of obs: 8800, groups: participantCode, 489; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.42204 0.05145 8.202 2.36e-16
## conditionNo Pre-Exposure -0.24363 0.09538 -2.554 0.010639
## conditionNon-Learnable Pre-Exposure -0.30171 0.08497 -3.551 0.000384
## conditionUnstructured Pre-Exposure -0.27862 0.09864 -2.825 0.004734
##
## (Intercept) ***
## conditionNo Pre-Exposure *
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cnNP-E cN-LP-
## cndtnNPr-Ex -0.538
## cndtnN-LP-E -0.605 0.324
## cndtnUnPr-E -0.520 0.269 0.330
## convergence code: 0
## boundary (singular) fit: see ?isSingular
Anova(m,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: isRight
## Chisq Df Pr(>Chisq)
## (Intercept) 67.275 1 2.362e-16 ***
## condition 17.082 3 0.0006797 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Condition dummy-coded - Learnable Pre-Exposure condition is the reference level.
m <- lm(dprime~condition,data=filter(subj_overall, condition!="Learnable Pre-Exposure Only"))
summary(m)
##
## Call:
## lm(formula = dprime ~ condition, data = filter(subj_overall,
## condition != "Learnable Pre-Exposure Only"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0357 -0.5418 -0.2402 0.1580 3.6546
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.68156 0.07193 9.475 < 2e-16
## conditionNo Pre-Exposure -0.38981 0.13516 -2.884 0.004100
## conditionNon-Learnable Pre-Exposure -0.50714 0.12032 -4.215 2.98e-05
## conditionUnstructured Pre-Exposure -0.44138 0.13073 -3.376 0.000794
##
## (Intercept) ***
## conditionNo Pre-Exposure **
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.03 on 485 degrees of freedom
## Multiple R-squared: 0.04654, Adjusted R-squared: 0.04064
## F-statistic: 7.891 on 3 and 485 DF, p-value: 3.78e-05
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: dprime
## Sum Sq Df F value Pr(>F)
## (Intercept) 95.23 1 89.7822 < 2.2e-16 ***
## condition 25.11 3 7.8913 3.78e-05 ***
## Residuals 514.41 485
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Condition dummy-coded - Learnable Pre-Exposure condition is the reference level.
m <- lm(dprime~condition,data=filter(subj_testType, testType=="familiarX"&condition!="Learnable Pre-Exposure Only"))
summary(m)
##
## Call:
## lm(formula = dprime ~ condition, data = filter(subj_testType,
## testType == "familiarX" & condition != "Learnable Pre-Exposure Only"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0789 -0.6376 -0.1448 0.3255 3.0416
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.63757 0.07028 9.072 < 2e-16
## conditionNo Pre-Exposure -0.33806 0.13206 -2.560 0.01077
## conditionNon-Learnable Pre-Exposure -0.49273 0.11756 -4.191 3.3e-05
## conditionUnstructured Pre-Exposure -0.40024 0.12773 -3.133 0.00183
##
## (Intercept) ***
## conditionNo Pre-Exposure *
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.006 on 485 degrees of freedom
## Multiple R-squared: 0.04315, Adjusted R-squared: 0.03724
## F-statistic: 7.291 on 3 and 485 DF, p-value: 8.625e-05
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: dprime
## Sum Sq Df F value Pr(>F)
## (Intercept) 83.33 1 82.3021 < 2.2e-16 ***
## condition 22.15 3 7.2912 8.625e-05 ***
## Residuals 491.06 485
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Condition dummy-coded - Learnable Pre-Exposure condition is the reference level.
m <- lm(dprime~condition,data=filter(subj_testType, testType=="novelX"&condition!="Learnable Pre-Exposure Only"))
summary(m)
##
## Call:
## lm(formula = dprime ~ condition, data = filter(subj_testType,
## testType == "novelX" & condition != "Learnable Pre-Exposure Only"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3170 -0.5841 -0.2001 0.2827 3.0132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.58408 0.06985 8.362 6.59e-16
## conditionNo Pre-Exposure -0.33741 0.13125 -2.571 0.010445
## conditionNon-Learnable Pre-Exposure -0.41088 0.11684 -3.517 0.000478
## conditionUnstructured Pre-Exposure -0.38400 0.12695 -3.025 0.002621
##
## (Intercept) ***
## conditionNo Pre-Exposure *
## conditionNon-Learnable Pre-Exposure ***
## conditionUnstructured Pre-Exposure **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1 on 485 degrees of freedom
## Multiple R-squared: 0.03498, Adjusted R-squared: 0.02901
## F-statistic: 5.861 on 3 and 485 DF, p-value: 0.0006165
Anova(m, type="III")
## Anova Table (Type III tests)
##
## Response: dprime
## Sum Sq Df F value Pr(>F)
## (Intercept) 69.94 1 69.9231 6.585e-16 ***
## condition 17.58 3 5.8606 0.0006165 ***
## Residuals 485.08 485
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Familiar X test
p1 <- ggplot(subset(test_type_exp,testType=="familiarX"&exp=="s1"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="familiarX"&exp=="s1"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=18)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Learnable Pre-Exposure Only"),
labels=c("Learnable\nPre-Exposure\nOnly"))+
scale_fill_manual(values=c("#265725"))+
scale_color_manual(values=c("#265725"))+
theme(legend.position="none")+
ylab("Accuracy - Familiar X test")+
xlab("Condition")
#Novel X
p2 <- ggplot(subset(test_type_exp,testType=="novelX"&exp=="s1"),aes(condition,accuracy,fill=condition, color=condition))+
geom_bar(position=position_dodge(.9), stat="identity", size=1.2,alpha=0.3, width=0.7)+
geom_jitter(data=subset(subj_testType,testType=="novelX"&exp=="s1"),aes(y=acc), width = 0.05, alpha=0.6,shape=21)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),color="black",position=position_dodge(.9),width=0.05, size=0.8)+
theme_classic(base_size=18)+
geom_hline(yintercept=0.5, linetype="dotted")+
scale_x_discrete(name="Condition",
breaks=c("Learnable Pre-Exposure Only"),
labels=c("Learnable\nPre-Exposure\nOnly"))+
scale_fill_manual(values=c("#265725"))+
scale_color_manual(values=c("#265725"))+
theme(legend.position="none")+
ylab("Accuracy - Novel X Test")+
xlab("Condition")
plot_grid(p1,p2, labels=c("A","B"),label_size=20)
overall_exp %>%
filter(exp=="s1") %>%
#select(-c(accuracy_ci,d_prime_ci,c_bias,c_bias_ci,c_bias_lower_ci,c_bias_upper_ci)) %>%
formattable()
exp | condition | N | accuracy | se | accuracy_ci | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_ci | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_ci | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s1 | Learnable Pre-Exposure Only | 48 | 0.646412 | 0.02951775 | 0.05938206 | 0.58703 | 0.7057941 | 1.011995 | 0.4350744 | 0.5769206 | 1.447069 | -0.24765 | 0.1082264 | -0.3558765 | -0.1394236 |
test_type_exp %>%
filter(exp=="s1") %>%
#select(-c(accuracy_ci,d_prime_ci,c_bias,c_bias_ci,c_bias_lower_ci,c_bias_upper_ci)) %>%
formattable()
exp | condition | testType | N | accuracy | se | accuracy_ci | accuracy_lower_ci | accuracy_upper_ci | d_prime | d_prime_ci | d_prime_lower_ci | d_prime_upper_ci | c_bias | c_bias_ci | c_bias_lower_ci | c_bias_upper_ci |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s1 | Learnable Pre-Exposure Only | familiarX | 48 | 0.6412037 | 0.03190216 | 0.06417887 | 0.5770248 | 0.7053826 | 0.8763520 | 0.4001411 | 0.4762109 | 1.276493 | -0.3730469 | 0.1184300 | -0.4914768 | -0.254616937 |
s1 | Learnable Pre-Exposure Only | novelX | 48 | 0.6516204 | 0.03030918 | 0.06097421 | 0.5906462 | 0.7125946 | 0.9315712 | 0.3779644 | 0.5536068 | 1.309536 | -0.1136713 | 0.1082417 | -0.2219131 | -0.005429604 |
##Correlations between Familiar X and Novel X
c <- corr.test(subset(subj_accuracy_wide, exp=="s1")[,c("novelX","familiarX")])
c
## Call:corr.test(x = subset(subj_accuracy_wide, exp == "s1")[, c("novelX",
## "familiarX")])
## Correlation matrix
## novelX familiarX
## novelX 1.0 0.8
## familiarX 0.8 1.0
## Sample Size
## [1] 48
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## novelX familiarX
## novelX 0 0
## familiarX 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
c$p
## novelX familiarX
## novelX 0.000000e+00 8.227912e-12
## familiarX 8.227912e-12 0.000000e+00
ggplot(subset(subj_accuracy_wide,exp=="s1"),aes(familiarX,novelX, color=condition,linetype=condition,shape=condition))+
geom_jitter(width=0.02,height=0.02,size=3)+
geom_smooth(method=lm,se =F,size=1.5)+
scale_color_manual(name="Condition",values=c("#265725"))+
scale_linetype_manual(name="Condition",values=c(1))+
scale_shape_manual(name="Condition",values=c(16))+
ylab("Accuracy - Novel X")+
xlab("Accuracy - Familiar X")+
theme_classic(base_size=18)+
theme(legend.position=c(0.25,0.9))
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="s1"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "s1")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2025.6 2036.5 -1010.8 2021.6 1726
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0537 -0.9745 0.2467 0.8765 1.2702
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.782 1.335
## Number of obs: 1728, groups: participantCode, 48
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.9017 0.2065 4.367 1.26e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.4970538 1.306441
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="s1"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "s1")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 2027.6 2044.0 -1010.8 2021.6 1725
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0537 -0.9745 0.2467 0.8765 1.2702
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.782 1.335
## stimulus (Intercept) 0.000 0.000
## Number of obs: 1728, groups: participantCode, 48; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.9017 0.2065 4.367 1.26e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.497068 1.306398
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="s1"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "s1" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1045.4 1054.9 -520.7 1041.4 862
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8641 -0.9603 0.2777 0.7782 1.5632
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.373 1.172
## Number of obs: 864, groups: participantCode, 48
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.7916 0.1923 4.116 3.85e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.4146819 1.168537
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="s1"&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "s1" & testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1047.4 1061.7 -520.7 1041.4 861
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8640 -0.9603 0.2777 0.7782 1.5632
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.373 1.172
## stimulus (Intercept) 0.000 0.000
## Number of obs: 864, groups: participantCode, 48; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.7916 0.1923 4.116 3.85e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.4146746 1.168538
The final model with the maximal random effects structure that still allowed the model to converge.
m <- glmer(isRight~1+(1|participantCode),data=subset(d,exp=="s1"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode)
## Data: subset(d, exp == "s1" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1048.9 1058.4 -522.4 1044.9 862
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7843 -0.9724 0.3592 0.7737 1.2429
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.166 1.08
## Number of obs: 864, groups: participantCode, 48
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.8163 0.1797 4.543 5.56e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.4640702 1.168449
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~1+(1|participantCode)+(1|stimulus),data=subset(d,exp=="s1"&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ 1 + (1 | participantCode) + (1 | stimulus)
## Data: subset(d, exp == "s1" & testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 1050.9 1065.1 -522.4 1044.9 861
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7843 -0.9724 0.3592 0.7737 1.2429
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 1.166e+00 1.080e+00
## stimulus (Intercept) 1.257e-76 1.121e-38
## Number of obs: 864, groups: participantCode, 48; stimulus, 18
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.8163 0.1797 4.543 5.56e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## .sig02 NA NA
## (Intercept) 0.4640675 1.168448
The final model with the maximal random effects structure that still allowed the model to converge.
#compare to No Pre-Exposure condition from Experiment 2
#recode condition
d$conditionC <- ifelse(d$condition=="Learnable Pre-Exposure Only",0.5,
ifelse(d$condition=="No Pre-Exposure",-0.5,NA))
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure")),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data:
## subset(d, exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure"))
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6036.3 6055.6 -3015.1 6030.3 4641
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0895 -1.0167 0.3237 0.8949 1.3116
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.6149 0.7841
## Number of obs: 4644, groups: participantCode, 129
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.49378 0.08032 6.147 7.87e-10 ***
## conditionC 0.55590 0.15961 3.483 0.000496 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.287
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.3363528 0.6512145
## conditionC 0.2430805 0.8687295
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure")),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data:
## subset(d, exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure"))
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6042.3 6080.9 -3015.1 6030.3 4638
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0895 -1.0167 0.3237 0.8949 1.3116
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 6.149e-01 7.841e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionC 5.426e-13 7.366e-07 NaN
## Number of obs: 4644, groups: participantCode, 129; stimulus, 72
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.49378 0.08033 6.147 7.89e-10 ***
## conditionC 0.55590 0.15961 3.483 0.000496 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.287
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.3363456 0.6512215
## conditionC 0.2430712 0.8687369
The final model with the maximal random effects structure that still allowed the model to converge.
#compare to No Pre-Exposure condition from Experiment 2
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,(exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure"))&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data:
## subset(d, (exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")) &
## testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3072.1 3089.3 -1533.0 3066.1 2319
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2045 -1.0370 0.4558 0.8925 1.2954
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.4379 0.6617
## Number of obs: 2322, groups: participantCode, 129
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.44492 0.07719 5.764 8.2e-09 ***
## conditionC 0.45795 0.15337 2.986 0.00283 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.289
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.2936397 0.5962060
## conditionC 0.1573446 0.7585483
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,(exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure"))&testType=="familiarX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data:
## subset(d, (exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")) &
## testType == "familiarX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3078.1 3112.6 -1533.0 3066.1 2316
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2045 -1.0370 0.4558 0.8925 1.2954
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 4.379e-01 6.617e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionC 5.111e-14 2.261e-07 NaN
## Number of obs: 2322, groups: participantCode, 129; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.44492 0.07719 5.764 8.2e-09 ***
## conditionC 0.45795 0.15337 2.986 0.00283 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.289
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.2936385 0.5962072
## conditionC 0.1573528 0.7585392
The final model with the maximal random effects structure that still allowed the model to converge.
#compare to No Pre-Exposure condition from Experiment 2
m <- glmer(isRight~conditionC+(1|participantCode),data=subset(d,(exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure"))&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode)
## Data:
## subset(d, (exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")) &
## testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3077.6 3094.9 -1535.8 3071.6 2319
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1515 -1.0345 0.4827 0.9013 1.2818
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantCode (Intercept) 0.3747 0.6122
## Number of obs: 2322, groups: participantCode, 129
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.44545 0.07344 6.066 1.31e-09 ***
## conditionC 0.52673 0.14605 3.606 0.00031 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.292
confint(m, method="Wald")
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.3015137 0.5893828
## conditionC 0.2404672 0.8129891
Note that this model does not converge (singular fit), thus the parameter estimates should be interpreted with caution.
m <- glmer(isRight~conditionC+(1|participantCode)+(1+conditionC|stimulus),data=subset(d,(exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure"))&testType=="novelX"),family=binomial,glmerControl(optimizer="bobyqa"))
## boundary (singular) fit: see ?isSingular
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: isRight ~ conditionC + (1 | participantCode) + (1 + conditionC |
## stimulus)
## Data:
## subset(d, (exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")) &
## testType == "novelX")
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3083.6 3118.1 -1535.8 3071.6 2316
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1515 -1.0345 0.4827 0.9013 1.2818
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participantCode (Intercept) 3.747e-01 6.122e-01
## stimulus (Intercept) 0.000e+00 0.000e+00
## conditionC 9.772e-14 3.126e-07 NaN
## Number of obs: 2322, groups: participantCode, 129; stimulus, 36
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.44545 0.07344 6.066 1.31e-09 ***
## conditionC 0.52673 0.14606 3.606 0.000311 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditionC 0.292
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(m, method="Wald")[5:6,]
## 2.5 % 97.5 %
## (Intercept) 0.3015126 0.5893824
## conditionC 0.2404509 0.8130027
##all data
m <- lm(dprime~1,data=subset(subj_overall,exp=="s1"))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_overall, exp == "s1"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7249 -1.0120 -0.6694 0.5681 2.8170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0120 0.2163 4.679 2.47e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.498 on 47 degrees of freedom
m <- lm(dprime~1,data=subset(subj_testType,exp=="s1"&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "s1" & testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5277 -0.8763 -0.2514 0.8585 2.3101
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8764 0.1989 4.406 6.06e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.378 on 47 degrees of freedom
m <- lm(dprime~1,data=subset(subj_testType,exp=="s1"&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ 1, data = subset(subj_testType, exp ==
## "s1" & testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8360 -0.9316 -0.3611 0.7118 2.2549
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9316 0.1879 4.958 9.68e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.302 on 47 degrees of freedom
#recode condition
subj_overall$conditionC <- ifelse(subj_overall$condition=="Learnable Pre-Exposure Only",0.5,
ifelse(subj_overall$condition=="No Pre-Exposure",-0.5,NA))
m <- lm(dprime~conditionC,data=subset(subj_overall,exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure")))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_overall,
## exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7249 -0.6257 -0.2917 0.1580 3.5373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6519 0.1054 6.183 7.93e-09 ***
## conditionC 0.7203 0.2109 3.416 0.000854 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.158 on 127 degrees of freedom
## Multiple R-squared: 0.08414, Adjusted R-squared: 0.07693
## F-statistic: 11.67 on 1 and 127 DF, p-value: 0.0008544
#recode condition
subj_testType$conditionC <- ifelse(subj_testType$condition=="Learnable Pre-Exposure Only",0.5,
ifelse(subj_testType$condition=="No Pre-Exposure",-0.5,NA))
m <- lm(dprime~conditionC,data=subset(subj_testType,(exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure"))&testType=="familiarX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## (exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")) &
## testType == "familiarX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5277 -0.7554 -0.2995 0.4840 2.8869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5879 0.1002 5.868 3.61e-08 ***
## conditionC 0.5768 0.2004 2.879 0.00469 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.1 on 127 degrees of freedom
## Multiple R-squared: 0.06125, Adjusted R-squared: 0.05386
## F-statistic: 8.286 on 1 and 127 DF, p-value: 0.004688
m <- lm(dprime~conditionC,data=subset(subj_testType,(exp=="s1"|(exp=="exp2"&condition=="No Pre-Exposure"))&testType=="novelX"))
summary(m)
##
## Call:
## lm(formula = dprime ~ conditionC, data = subset(subj_testType,
## (exp == "s1" | (exp == "exp2" & condition == "No Pre-Exposure")) &
## testType == "novelX"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8360 -0.6405 -0.2467 0.3238 2.9398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5891 0.0947 6.221 6.59e-09 ***
## conditionC 0.6849 0.1894 3.616 0.00043 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.04 on 127 degrees of freedom
## Multiple R-squared: 0.09336, Adjusted R-squared: 0.08622
## F-statistic: 13.08 on 1 and 127 DF, p-value: 0.0004296