
  

USING LANGUAGE TO DISCOVER CATEGORIES: MORE 
NAMEABLE FEATURES IMPROVE CATEGORY LEARNING 

MARTIN ZETTERSTEN*1 and GARY LUPYAN1 

*Corresponding Author: zettersten@wisc.edu 
1Psychology Department, University of Wisconsin-Madison, Madison, USA 

 

Does the lexicon of a language have consequences for cognition? Here, we provide 
evidence that the ease with which category features can be named can influence category 
learning. Across two experiments, participants learned to distinguish images composed of 
colors (Experiment 1) and shapes (Experiment 2) that were either easy or more difficult 
to name in English. Holding the category structure constant, when the underlying features 
of the category were easy to name, participants were faster and more accurate in learning 
the novel category. We argue that these findings suggest that labels allow learners to 
form more compact hypotheses, which in turn can be confirmed or disconfirmed in the 
course of learning. These results have consequences for considering how cross-linguistic 
differences in lexical inventory affect how readily novel categories are learned. 

1. Introduction 

Categorization is central to cognition (Harnad, 1990; Murphy, 2002). Learning 
categories requires recognizing which features or dimensions of stimuli are 
relevant and which are not. For example, color is a relevant dimension for 
categorizing foods because many foods have characteristic colors. In contrast, 
color is largely irrelevant for categorizing vehicles: knowing that an object is 
brown does not help in categorizing it as a car. But how do we discover which 
features and dimensions are relevant to category membership? One common 
proposal is that learners track how strongly different features are associated with 
a category (Rosch & Mervis, 1975). But how do learners identify candidate 
features in the first place (see e.g., Schyns, Goldstone, & Thibaut, 1998 for 
discussion)? 

Here, we ask whether part of the answer lies in language (Lupyan, 2012). 
Might the vocabulary of a language provide the learner with a powerful set of 
candidate features (priors) to use when learning new categories? In particular, 
we test the hypothesis that the ease with which features can be named influences 
the likelihood that they are considered as relevant for category membership. For 
example, on encountering a novel stimulus, learners can more easily form a 
verbal description of some candidate features (e.g., “red” as a description of a 
color or “tree” as a description of a complex shape) compared to others (e.g., 
“greenish-yellow-brown mix” or “nonsymmetrical spacecraft looking thing”). 
Features that are more nameable may be represented in a more stable way, 



  

making it more likely to provide a hypothesis about category membership (e.g., 
“items with the color red belong in the same category”) that can be tested during 
category learning. If language plays a role in our ability to form hypotheses 
about novel categories, this has important implications for understanding the 
consequences of cross-linguistic differences: when a language has a readily 
accessible name for a feature or dimension, it makes that feature/dimension 
easier to represent during category learning. 

In the current experiment, we compare participants’ ability to learn novel 
categories when category exemplars were composed of more nameable or less 
nameable color features (Experiment 1) or shape features (Experiment 2). Both 
category types had similar logical structure: the categories were structured such 
that one color feature or one shape feature always predicted category 
membership (e.g., images containing red belonged to category A while those 
containing brown belonged to category B). We hypothesized that categories 
would be easier to learn when the underlying color and shape features were 
easier to name, and therefore could be more readily formulated as a hypothesis 
about category membership. 

2. Experiment 1: Color-based category features 

2.1. Participants 

We recruited 201 participants through Amazon Mechanical Turk. Participants 
were randomly assigned to the High Nameability Condition (n = 101) or to the 
Low Nameability Condition (n = 100) and were paid $0.60 - $0.75 for 
completing the task, which lasted approximately 4 minutes. 

2.2. Stimuli 

The exemplars were circles (“color wheels”) composed of 3 different colors (see 
Figure 1A). Following the design of (Couchman, Coutinho, & Smith, 2010), one 
of the colors was perfectly predictive of category membership. The other two 
were correlated at 66.6% with category membership. The critical manipulation 
involved the nameability (Guest & Laar, 2002) of the colors comprising each 
color wheel exemplar. To assess nameability we used the results of a large-scale 
online color naming study (N=134,727, Munroe, 2010), restricting the analysis 
to RGB values named by ≥100 individuals. To ensure that the results could not 
be affected by differences in color discriminability between the low- and high-
nameability conditions, we selected the colors such that all the pairwise CIE-
LAB distances were equated using ΔE2000 (Sharma et al., 2005). We 



  

constructed image sets with different color pairs in the critical position to ensure 
that any effect was not due to idiosyncratic properties of colors in the category-
diagnostic position. The critical colors in the more-nameable categories were 
“brown” RGB=(120, 80, 40) and “red” RGB=(220, 20, 0), “blue” RGB=(30, 90, 
210) and “orange” RGB=(250, 120, 30), or “blue” and “brown”. These colors 
were named according to their modal label by 80% - 85% of the population. The 
critical colors in the low-nameability were RGB=(170,160,40) (modal name 
“mustard”) and RGB=(200,170,170) (modal name “lavender”) or RGB=(200, 
100, 70) (modal name “brown”) and RGB=(70, 100, 90) (modal name “grey”). 
These names were only used by 6% - 10% of participants in the original naming 
task. One drawback of the current approach is that ΔE requires a device-
independent color space while our participants viewed the colors on their (often 
uncalibrated) monitors. However, while this introduces noise, there is no 
indication that this variability in viewing conditions favorably affects the high-
nameability colors compared to the low-nameability colors. 

2.3. Task 

The participants were tasked with learning to place the color wheels into one of 
two categories by dragging it into the appropriate box , labeled as box “A” and 
box “B” (Figure 2). Participants completed a total of 24 training trials, split into 
3 blocks. On each block, participants sorted the prototype exemplar (the top 
image in Figure 1A) for each category twice, and the remaining two exemplars 
of each category once. Participants received immediate feedback on whether 
their choice was correct or incorrect. Trials were repeated after an incorrect 
response. Box locations were counterbalanced across participants. 
 



  

 
Figure 1. (A) Example stimuli for the high and low nameability condition and (B) Accuracy 
on categorization across blocks depending on nameability condition in Experiment 1 (color-
based features). 

 

 
Figure 2. Task setup for category learning experiment 



  

2.4. Results 

Training results are shown in Figure 1B. We tested the effects of condition (low 
nameability vs. high nameability), block, and their interaction on participants’ 
accuracy using a logistic mixed-effects model. Variables were centered and the 
model included a by-subject random intercept and random slope for block.  

Accuracy increased over the course of training, b = .98, Wald 95% CI = 
[.81, 1.16], z = 11.03, p < .0001. Overall accuracy was higher in the high 
nameability condition (M = 85.1%, 95% CI = [82.7%, 87.5%]) compared to the 
low nameability condition (M = 77.4%, 95% CI = [74.3%, 80.4%]), b = 0.74, 
Wald 95% CI = [.39, 1.09], z = 4.13, p < .0001. There was significant 
interaction between block and condition, b = .43, Wald 95% CI = [.14, .71], z = 
2.89, p = .003, indicating that participants learned the categories more quickly in 
the high nameability condition than in the low nameability condition. 

3. Experiment 2: Shape-based category features 

3.1. Participants 

We recruited 120 participants through Amazon Mechanical Turk. Participants 
were randomly assigned to the High Nameability Condition (n = 58) or to the 
Low Nameability Condition (n = 62) and were paid $0.90 for completing the 
task, which lasted 8 minutes on average. 

3.2. Stimuli 

The exemplars were circles similar to Experiment 1 composed of 2 different 
shapes (see Figure 3A). The shapes were chosen from a previous study on the 
nameability of complex polygon shapes (Vanderplas & Garvin, 1959). To 
ensure that shapes used in the experiment were equally discriminable, we 
conducted a separate norming task in which participants (n = 24) performed a 
speeded same/different task—an extremely sensitive method for measuring 
represented visual similarity (Lupyan, 2008). We collected these visual 
discriminability data for the eight most nameable and the eight least nameable 
shapes from Vanderplas & Garvin (1959)’s ratings. The high nameability shapes 
were slightly more discriminable than the low nameability shapes, making it 
impossible to find enough shapes to recreate the same feature structure as in 
Experiment 1 while still matching the two conditions on shape discriminability. 
We therefore selected four highly nameable shapes and four shapes with low 
nameability such that the pairwise discriminability (as measured by reaction 
times in the norming task) was matched between the two shape sets. The modal 



  

names for the highly nameable shapes were “bear”, “tree”, “frog”, and “swan” 
(left to right in Fig. 3A). The modal names for the low nameability shapes were 
“mountain”, “rabbit”, “bird” and “hook”. As in Experiment 1, the two categories 
were defined by the presence of a single critical shape. To increase the difficulty 
of the task and increase the variability of the stimuli, we randomized the 
location of the shapes, such that the critical image appeared in all three “slice” 
locations rather than in a fixed location, as in Experiment 1. 

3.3. Task 

The category learning task was identical to Experiment 1. Participants 
completed 24 training trials split into 3 blocks. 

 
Figure 3. (A) Example stimuli for the high and low nameability condition and (B) Accuracy 
on categorization across blocks depending on nameability condition in Experiment 2 (shape-
based features). 

3.4. Results 

To analyze the training results (see Figure 3B), we fit the same model as in 
Experiment 1. Accuracy increased over training blocks, b = 1.45, Wald 95% CI 
= [1.17, 1.73], z = 10.09, p < .0001. As in Experiment 1, overall accuracy was 
higher in the high nameability condition (M = 81.5%, 95% CI = [77.7%, 



  

85.6%]) compared to the low nameability condition (M = 66.3%, 95% CI = 
[61.7%, 70.8%]), b = 1.45, Wald 95% CI = [.89, 2.01], z = 5.04, p < .0001. We 
also found a significant interaction between block and condition, b = .91, Wald 
95% CI = [.42, 1.39], z = 3.67, p < .001, indicating faster increases in accuracy 
in the high nameability condition compared to the low nameability condition. 

4. Discussion 

Categories defined by a more nameable color or shape were learned 
substantially faster than categories with an identical structure but whose 
defining feature was less nameable. This result supports the idea that, at least for 
learning simple categories with diagnostic features, more easily formed verbal 
descriptions may make it easier for participants to formulate and test hypotheses 
about which features define a category. This result supports and extends 
previous work showing that controlling for categorization experience, named 
categories are easier to learn than unnamed categories (Lupyan, Rakison, & 
McClelland, 2007). 

An important question is whether labels truly are the causal force driving 
the difference in categorization accuracy. One potential worry is that more 
nameable colors and shapes are more nameable because they are somehow 
cognitively simpler, rather than because labels aid learners in representing them 
in the context of category learning. One way to address this worry is to teach 
labels for the low-nameability categories and test the specific efficacy of such 
label-based training. Another way is to conduct cross-linguistic experiments: to 
the extent that language does the driving, categorization performance of e.g., 
Mandarin speakers, ought to be better predicted by shape/color nameability of 
Mandarin rather than English. We are currently using both approaches to 
address the question of causality.  

Another worry is that nameability is confounded with familiarity. Perhaps 
more nameable items are more familiar and it is familiarity rather than language 
that is causing the difference between conditions. This is possible in the case of 
shapes (though note that the specific shapes were equally novel). We are unsure 
how a familiarity-based explanation would work in the case of color, however. 
Unsaturated colors are considerably harder to name than saturated colors. 
However, saturated colors span only a small region of color space, and most of 
our experiences involve less than fully saturated colors, making less saturated 
colors, if anything, more perceptually familiar. 

The current findings have important implications for thinking about why 
and in what way cross-linguistic differences in vocabulary may impact 



  

cognition. When one language provides a compact label for a feature that 
another language does not, it provides a verbal encoding that allows learners to 
more readily represent this feature. A more easily represented feature can then 
be entertained as a potential high-level hypothesis about the structure of a novel 
category. This may help to explain the role played by language in performance 
across various domains, including representing exact numerosity (Frank, 
Everett, Fedorenko, & Gibson, 2008; Gordon, 2004) and relational reasoning 
(Christie & Gentner, 2014; Gentner, Ozyürek, Gürcanli, & Goldin-Meadow, 
2013). As languages develop, they also change the verbal repertoire available to 
their users. These changes in verbal repertoire not only have consequences for 
communication, they also have consequences for forming novel categories. 
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