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A B S T R A C T

Non-adjacent dependencies are ubiquitous in language, but difficult to learn in artificial language experiments in
the lab. Previous research suggests that non-adjacent dependencies are more learnable given structural support
in the input – for instance, in the presence of high variability between dependent items. However, not all non-
adjacent dependencies occur in supportive contexts. How are such regularities learned? One possibility is that
learning one set of non-adjacent dependencies can highlight similar structures in subsequent input, facilitating
the acquisition of new non-adjacent dependencies that are otherwise difficult to learn. In three experiments, we
show that prior exposure to learnable non-adjacent dependencies - i.e., dependencies presented in a learning
context that has been shown to facilitate discovery - improves learning of novel non-adjacent regularities that are
typically not detected. These findings demonstrate how the discovery of complex linguistic structures can build
on past learning in supportive contexts.

1. Introduction

Non-adjacent dependencies are ubiquitous in language. For in-
stance, English marks number agreement (e.g. The linguists at the con-
ference are restless) and aspect (e.g. People are learning all of the time) via
inflectional morphemes that establish dependencies between distal
items. Despite their prevalence in natural languages, non-adjacent de-
pendencies in artificial grammar learning experiments are notoriously
difficult to learn, both for adults and infants (e.g., Gómez, 2002;
Gonzalez-Gomez & Nazzi, 2012; Newport & Aslin, 2004; Romberg &
Saffran, 2013; see Wilson et al., 2018 for a recent review). Given their
centrality to language structure, how do we learn non-adjacent de-
pendencies that are not easily detected in speech?

Previous research suggests that the input can be structured to sup-
port learners' discovery of non-adjacent regularities. For example,
learning can be facilitated simply by increasing exposure (Romberg &
Saffran, 2013; Vuong, Meyer, & Christiansen, 2016); additional ex-
perience may allow learners more opportunity to uncover patterns.
Learning can also be improved when the non-adjacent dependencies are
paired with additional cues that highlight their relatedness (e.g., Onnis,
Monaghan, Richmond, & Chater, 2005; van den Bos, Christiansen, &
Misyak, 2012). For instance, Onnis et al. (2005) found that learners
were better able to learn dependencies between phonologically similar
syllables, and Newport and Aslin (2004) showed that participants could

successfully detect non-adjacent patterns among sets of consonants or
vowels, but failed to discover non-adjacent patterns among syllables.
Thus, non-adjacent relations seem to be more easily tracked when de-
pendent elements are perceived as similar. Perceptual cues that make
relevant items more salient, such as prosody or pauses that mark
boundaries in the speech stream, can also boost learning (e.g., Grama,
Kerkhoff, & Wijnen, 2016; Peña, Bonatti, Nespor, & Mehler, 2002;
Wang & Mintz, 2018), demonstrating that non-adjacent relations can be
highlighted in numerous ways.

A particularly powerful factor that can highlight the presence of
non-adjacent dependencies is the variability surrounding to-be-learned
patterns (Gómez, 2002; Gómez & Maye, 2005). In a classic study by
Gómez (2002), participants' learning of non-adjacent regularities im-
proved significantly as the number of unique items that appeared be-
tween the dependent elements increased. Variability in the intervening
elements affects learning because it can focus attention toward in-
variant, and hence reliable, structure in the input. With highly variable
intermediate elements, learners are better able to detect the reliable
associations between non-sequential items, suggesting that surrounding
information can help direct learners' attention to non-adjacent regula-
rities.

Learners can also build on past experience with related structures to
detect the presence of non-adjacent structures. Previous experience can
shape learners' expectations and change the statistical relations that
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they track (e.g., LaCross, 2015; Lew-Williams & Saffran, 2012; Potter,
Wang, & Saffran, 2017; Wang, Zevin, & Mintz, 2017). For example,
experiencing some word categories in adjacent structures subsequently
helps learners recognize non-adjacent relations between the same
words (Lany & Gómez, 2008; Lany, Gómez, & Gerken, 2007). Following
experience with associations that are easily learnable, learners may be
better able to detect more complex relations (e.g., Elman, 1990; Lai &
Poletiek, 2011). Existing native language knowledge can have a parti-
cularly powerful impact on the expectations learners form about the
structure of upcoming language input. In a recent study, Wang et al.
(2017) showed that recent experience with consistent rhythmic pat-
terns embedded in native language structures changes what patterns
learners subsequently infer from novel materials. Participants learned
non-adjacent dependencies embedded in an artificial language after
they were exposed to English phrases that had a matched four-word
structure, but not when the two structures were in conflict. This finding
is consistent with evidence that infants are better able to discover
regularities with a structure that matches their prior experience (Lew-
Williams & Saffran, 2012). Together, these studies suggest that learners
can use prior experience to improve their learning of non-adjacent
dependencies by building on past learning about specific items in
simpler contexts or by drawing on knowledge about non-adjacent
structures from their first language. However, this leaves open the
question of whether learners can discover non-adjacent dependencies
de novo when the relevant dependencies only appear in non-adjacent
relations. When acquiring a novel language, learners must learn new
distal grammatical relations that are rarely, if ever, encountered in
simpler forms. How might learners break in to learning new non-ad-
jacencies?

In the current work, we investigated whether past distributional
learning itself may offer a solution to the problem of discovering new
non-adjacencies. This explanation focuses on the role of past learning in
guiding future learning. If the input is initially structured to support
successful non-adjacent dependency learning, this could lead learners
to expect to encounter non-adjacent structure in the language. These
expectations could subsequently allow them to extract non-adjacent
patterns, even in contexts when learning would otherwise be difficult.
To test this proposal, we designed a series of experiments in which
learners could build on past distributional learning to succeed when
faced with a more difficult context for detecting non-adjacent structure.
We hypothesized that prior experience with non-adjacent dependencies
in the presence of high variability (a context known to support learning;
Gómez, 2002; Gómez & Maye, 2005; Plante et al., 2014) would facil-
itate acquisition of a new set of non-adjacent associations among novel
words. In three studies, we tested our hypothesis that experience with
one set of non-adjacent dependencies presented in more learnable cir-
cumstances would subsequently facilitate learning of a new set of non-
adjacent dependencies that learners otherwise struggle to detect. To-
gether, these studies explore how pattern learning in the present builds
on pattern learning from the past by testing whether prior experience
with readily learnable structures allows difficult linguistic structures to
be learned more easily.

2. Experiment 1

Our first study tested whether being pre-exposed to non-adjacent
dependencies in a learnable context would aid participants in re-
cognizing novel non-adjacent regularities that are difficult to learn.
Learners were tested for their ability to discover the association be-
tween the first and third word in three-word sequences (e.g., pel-kicey-
rud). One group of learners was pre-exposed to a set of artificial sen-
tences that we expected to be learnable based on past work (Gómez,
2002): consistent non-adjacent dependencies with high variability in
the intervening elements (Learnable Pre-Exposure Condition). A com-
parison group was pre-exposed to a set of sentences that was matched in
variability but which lacked learnable structure, consisting instead of

inconsistent non-adjacent dependencies (Non-Learnable Pre-Exposure
Condition). After pre-exposure, all participants were trained on a new
set of words organized such that there were consistent non-adjacent
dependencies with low variability in the intervening elements – a
structure that participants in prior studies consistently struggled to
learn (Gómez, 2002). We predicted that participants who had been pre-
exposed to learnable non-adjacent relations would more readily detect
a new set of non-adjacent dependencies, compared to those who had
not. Stimuli, data, and analysis scripts for all experiments are publicly
available on the Open Science Framework (https://osf.io/m3wn4/).

2.1. Method

2.1.1. Participants
Sixty-seven students at a large public university in the midwestern

United States (37 female; mean age: 18.8 years, SD = 1.03; 63 native
speakers of English) participated for Introductory Psychology course
credit. The sample size was based on previous studies on non-adjacent
dependencies, which typically include 12–18 participants per test
condition (Frost & Monaghan, 2016; Gómez, 2002; Wang et al., 2017;
Wang & Mintz, 2018). We reasoned that increasing our target sample
per condition to roughly 30 participants per condition would ensure
adequate power based on past research. Participants were randomly
assigned to either the Learnable (n = 32) or the Non-Learnable
(n = 35) Pre-Exposure Condition.

2.1.2. Stimuli & design
2.1.2.1. Pre-exposure phase. The stimuli consisted of three-word
sequences (e.g., aXb) with two monosyllabic words as the first and
last elements (e.g., a and b) and a disyllabic word as the middle element
(i.e., an X element). The items in the Pre-Exposure Phase were
constructed from 6 monosyllabic nonce words (elements a-f: dak,
tood, feep, nov, lun, kip) and 24 disyllabic nonce words (X elements:
balip, bevit, coomo, deecha, fengle, gasser, geeble, ghope, keeno, koba, lamu,
loga, manu, mooper, neller, riffle, rilep, roosa, skiger, suleb, tasu, toma,
vulan, wasil). The nonce words were constructed based on items from
Gómez (2002) and with the help of a database of pseudowords used in
psychological research (Horst & Hout, 2016). Items were selected to
follow English phonotactic rules and to include a variety of
phonological elements, in particular in word onsets and offsets. Each
word was recorded in citation form by a female monolingual speaker of
English. Monosyllables and disyllables were each normalized for
duration (monosyllables: 655 ms; disyllables: 830 ms) and for
average intensity (65–68 dB). The individual items were subsequently
concatenated into three-word sentences (aXb, cXd, etc.; see Fig. 1), with
100 ms of silence between each element within a triplet.

The triplet sequences (e.g., aXb) in the Pre-Exposure Phase were
either composed of consistent non-adjacent dependencies (Learnable
Pre-Exposure Condition) or inconsistent non-adjacent dependencies
(Non-Learnable Pre-Exposure Condition; see Fig. 1). In the Learnable
Pre-Exposure Condition, there were three non-adjacent dependencies
with varying middle (X) elements (aXb, cXd, eXf). We chose a set size of
24 words for the middle X element, since this amount of variability in
the intervening word led to the highest learning accuracy in Gómez
(2002). We verified that these materials indeed lead participants to
successfully learn non-adjacent dependencies in a separate pre-regis-
tered experiment, reported in the supplementary materials (see S1 in
the supplementary materials for further details). The Non-Learnable
Pre-Exposure Condition used the same elements as the Learnable Con-
dition, but recombined them such that there were no consistently pre-
dictable (i.e., deterministic) non-adjacent regularities (e.g., elements
beginning with the a element ended with b, d, or f with equal prob-
ability). The triplets were presented one at a time with 750 ms of si-
lence between triplets and in one of two pseudorandomized orders.
Orders were created with the constraint that each non-adjacent de-
pendency (i.e., an element with a specific first and last element, e.g.
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aXb, regardless of the medial element) could occur no more than 3
times in a row. Across the Pre-Exposure phase, participants heard each
triplet twice for a total pre-exposure time of 7m25s. This meant that, in
the Learnable Pre-Exposure Phase, participants heard each of the three
dependencies (aXb, cXd, eXf) 2 ∗ 24 = 48 times across the Pre-Exposure
phase. In the Non-Learnable Pre-Exposure, participants heard each of
the nine dependencies (aX(1)b, aX(2)d, aX(3)f, cX(3)b, ….) 2 ∗ 8 = 16
times during the Pre-Exposure phase.

The Learnable Pre-Exposure and the Non-Learnable Pre-Exposure
materials share several structural features: for example, the sentences in
both conditions follow a monosyllabic word - bisyllabic word - mono-
syllabic word structure, and items occur consistently in a specific po-
sition in the sentence. In principle, these features may also support
learning the patterns presented in the Exposure Phase. Crucially,
however, the Non-Learnable Pre-Exposure contains no information
about non-adjacent dependencies, in the sense of exclusive, determi-
nistic links between specific sentence-initial and sentence-final words.1

In particular, the structural features contained within the Non-Learn-
able Pre-Exposure do not distinguish between the test elements that
belong to the Exposure language and those that do not (see Test Phase
below): for instance, all test items follow the monosyllabic word - bi-
syllabic word - monosyllabic word structure.

2.1.2.2. Exposure phase. As in the Pre-Exposure Phase, the Exposure
stimuli consisted of three-word sequences (e.g., gXh) with monosyllabic
words as the first and last elements (e.g., g and h) and a disyllabic word
as the middle element (i.e., an X element). The items in the Exposure
Phase were 6 new monosyllabic words (elements g-l: pel, rud, vot, jic,
bap, ghob) and 3 new disyllabic words (X elements: kicey, puser, wadim).
The stimuli were recorded, normalized, and concatenated into three-
word sequences in the same manner as the Pre-Exposure stimuli.

In the Exposure Phase (see Fig. 2), participants were randomly as-
signed to one of two possible languages (L1 or L2) with novel non-
adjacent dependencies. In contrast to the Pre-Exposure Phase, the non-
adjacent dependencies consisted of only three possible middle ele-
ments; prior studies suggest that non-adjacent dependencies with a
limited number of middle elements are difficult to learn (e.g., Gómez,
2002). The triplet sequences were presented in one of two pseudo-
randomized orders for each language, with the constraint that no triplet
could be presented twice in a row, and items with the same non-ad-
jacent dependency (first and third) items could occur no more than
three times in a row. Participants heard each of the 9 triplet sequences
24 times across training, for a total Exposure time of 11m7s. Overall,
the number of triplet sequences was selected to ensure that the total
training time (Pre-Exposure + Exposure = 18m32s) was similar in
duration to the 18-min training time from Gómez (2002). In de-
termining the relative durations of the Exposure Phase (60% of the total
training time) and the Pre-Exposure phase (40% of the total training
time) over the ~18-min training time, we struck a balance between
providing participants with sufficient training on the Pre-Exposure
items while still allowing participants time to learn the non-adjacent
dependencies in the Exposure phase.

2.1.2.3. Test phase. In each of two Test blocks, the Familiar X Test block
and the Novel X Test block, participants were presented with individual

Fig. 1. Pre-Exposure Phase Design in Experiment 1. The full set of 24 X words occurred equally frequently in each condition. In the design of the Non-Learnable Pre-
Exposure condition, the 24 medial words were divided into three sets of 8 words each, labeled X(1), X(2), and X(3), to ensure that every X word occurred equally
frequently with each initial (a, c, e) and final (b, d, f) word in both Pre-Exposure conditions.

1 The term “non-learnable” is meant to specifically refer to deterministic non-
adjacent links between the first and last words in triplet sequences. The Non-
Learnable Pre-Exposure condition contained other dependencies a learner
might uncover (e.g., a triplet-specific dependency such as “feep followed by
coomo predicts tood”). However, the goal of the design was to ensure that the
structure of the Non-Learnable Pre-Exposure was specifically less consistent
with the structure of the target non-adjacent dependencies than the Learnable
Pre-Exposure.
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items that either matched or mismatched the Exposure language (see
Fig. 3). The Familiar X Test preceded the Novel X Test. Familiar X Test
trials matched the test design from Gómez (2002) and were thus always
presented first in order to facilitate comparison with past research.
During the Familiar X Test block, participants heard 18 triplet
sequences: the nine triplets belonging to L1 and the nine triplets
belonging to L2. Thus, for each participant, half of the sentences in
the Familiar X Test block were sentences presented during the Exposure
Phase, while the other half had identical individual words but violated
the non-adjacent dependencies from the Exposure Phase. The
counterbalancing ensured that items that were familiar in L1 were
unfamiliar in L2 and vice versa.

In the Novel X Test block, participants encountered 18 additional
sentences (nine consistent with L1 and nine consistent with L2) con-
structed with three new middle X elements (benez, chila, nilbo) that
were not heard during the Exposure Phase (similar items were used by
Frost & Monaghan, 2016; Grama et al., 2016). These types of test trials
were added as a stricter test that participants had learned the non-ad-
jacent dependencies. On Familiar X trials, participants could con-
ceivably succeed simply by memorizing specific sentences from the
Exposure Phase; however, on Novel X trials, participants could only
perform accurately if they had encoded the relationship between the
first and last words in each triplet. The Novel X sentences were re-
corded, normalized, and concatenated in the same manner as the three-
word sentences in the Pre-Exposure Phase and the Exposure Phase.

2.1.3. Procedure
2.1.3.1. Training phase. The experiment consisted of a two-part
Training Phase (Pre-Exposure and Exposure) in which participants
listened to the novel language materials through headphones. The
Pre-Exposure Phase transitioned seamlessly into the Exposure Phase;
the only cue to the transition was the change in the language elements
themselves. Participants viewed a series of (unrelated) natural
landscape images while listening. Note that the only difference
between the Learnable and Non-Learnable Pre-Exposure conditions
pertained to the structure of the pre-exposure materials. The Exposure
Phase was equivalent across the two conditions.

2.1.3.2. Test phase. The Test Phase consisted of a Familiar X Test block
and a Novel X Test block (see Fig. 3). All participants saw the same test
items. Participants first judged the 18 triplet sequences from the
Familiar X Test block, followed by the 18 triplet sequences from the
Novel X Test block. Within each block, the items were presented in
random order. For each item, participants were asked to decide whether
the sentence matched the word order rules of the language they had just
heard, matching procedures from past studies of non-adjacent
dependency learning (e.g., Gómez, 2002). Participants were
instructed that half of the sentences would match the word order
rules of the language and half would not. Participants responded by
pressing the “y” key or the “n” key on a keyboard to indicate whether or
not sentences matched the word order rules.

2.2. Results

All data and full scripts documenting the data analysis for all ex-
periments are openly available on the Open Science Framework
(https://osf.io/m3wn4/). These materials include a walkthrough of all
analyses reported in the manuscript, including further modeling details
and supplementary analyses described in the Results section (accessible
through a web browser at the following link: https://mzettersten.
github.io/apg-non-adjacent/data_analysis/APG_analysis.html).

To test the effect of Learnable vs. Non-Learnable pre-exposure on
the acquisition of the difficult non-adjacent dependencies in the ex-
posure language, we predicted participants' correct responses across all
test trials from Condition (centered; Non-Learnable = −0.5,
Learnable = 0.5) in a logistic mixed-effects model (Baayen, Davidson,
& Bates, 2008; Jaeger, 2008). We used the lme4 package version 1.1–21
in R (version 3.6.1) to fit all models (Bates, Mächler, Bolker, & Walker,
2015; R Development Core Team, 2019). We fit the model with the
maximal random effects structure, including a by-subject intercept and
a by-item random intercept and slope for Condition, and pruned the
random effects structure iteratively until arriving at the model with the
maximal random effects structure that still allowed the model to con-
verge (Barr, Levy, Scheepers, & Tily, 2013). The final model included a
by-subject random intercept and a by-item random slope for condition.
Note that in all models reported across these experiments, the para-
meter estimates and test statistics for the models with the maximal
random effects structure and for the final converging models with
simplified random effects structure were highly similar and yielded
qualitatively equivalent results (see analysis walkthrough documents
for details on model outputs).

Collapsing across all test trials, participants in the Learnable Pre-
Exposure condition (M = 62.0%, 95% CI = [55.0%, 68.9%]) were
more accurate than participants in the Non-Learnable Pre-Exposure
condition (M = 52.9%, 95% CI = [49.4%, 56.5%]), b = 0.45, Wald
95% CI = [0.08, 0.82], z = 2.39, p = .017 (see Fig. 4). In follow-up
analyses investigating whether accuracy differed between test blocks,
we found no significant difference in accuracy between Familiar X and
Novel X trials (p = .91) and no significant interaction between test type
and condition (p = .91). A similar effect of condition was obtained
when Familiar X Test trials (b = 0.42, Wald 95% CI = [0.05, 0.79],
z = 2.25, p = .024) and Novel X Test trials (b = 0.41, Wald 95%

Fig. 2. Exposure phase design (identical across all conditions and experiments).

Fig. 3. Test Trial Design (identical across all experiments).
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CI = [0.04, 0.79], z = 2.16, p = .031) were considered separately. In
the supplementary analyses (S2), we report further information on test
accuracy within Familiar X and Novel X test trials.

To assess the robustness of the effect to different analytic ap-
proaches, we also conducted a signal detection analysis in which we
computed the sensitivity index d′ and the response bias statistic c for
each participant. Following Stanislaw and Todorov (1999), extreme
values of 0 and 1 were replaced with 1 / (2 ∗ N) and 1 − 1 / (2 ∗ N),
respectively, where N is the number of total “yes” or “no” trials in a
given condition. Participants in the Learnable Pre-Exposure condition
(d′ = 0.82, 95% CI = [0.33, 1.30]) showed greater sensitivity than
participants in the Non-Learnable Pre-Exposure condition (d′ = 0.20,
95% CI = [−0.05, 0.45]) in distinguishing items that followed the non-
adjacent pattern from items that did not (t(65) = 2.36, p = .02).
Participants in both conditions showed a slight bias toward responding
“yes”, i.e. responding that patterns belonged to the language (Learnable
Pre-Exposure condition: c = −0.17, 95% CI = [−0.30, −0.05]; Non-
Learnable Pre-Exposure condition: c = −0.30, 95% CI = [−0.48,
−0.13]). The magnitude of the response bias did not differ significantly
between conditions, t(65) = 1.23, p = .22.

We also investigated the relation between participants' performance
on the two test trial types (Familiar X Test vs. Novel X Test).
Performance on Familiar X Test trials and Novel X Test trials was cor-
related in both the Learnable Pre-Exposure condition (r = 0.82,
p < .001) and in the Non-Learnable Pre-Exposure condition (r = 0.34,
p = .04), though the correlation in the Non-Learnable Pre-Exposure
condition was driven by an outlier with perfect performance on both
test trial types (Studentized residual ti = 5.04, Bonferroni-corrected
p < .001). When this outlier participant was removed from the ana-
lysis, there was no correlation between Familiar X Test and Novel X Test
trials in the Non-Learnable Pre-Exposure condition (r = −0.14,
p = .44). With or without the inclusion of this outlier participant, there
was a significant interaction between test trial type and condition,
suggesting that the relation between test trial types was stronger in the
Learnable Pre-Exposure condition (outlier included: t(63) = 3.44,
p = .001, see Fig. S3 in the supplementary section for a graphical re-
presentation of the relationship between accuracy on Familiar X and
Novel X trials). Thus, participants who successfully identified non-ad-
jacent patterns that they had heard during training were also more
likely to demonstrate generalization of the underlying non-adjacent
dependencies, and this relation was stronger in the Learnable Pre-
Exposure condition.

2.3. Discussion

Experience with learnable non-adjacent regularities supported par-
ticipants' ability to learn a new set of non-adjacent regularities that are
typically difficult to learn. Participants in the Learnable Pre-Exposure
and Non-Learnable Pre-Exposure conditions received identical experi-
ence with the target language during the Exposure Phase, yet only those
participants who had previously heard sequences with learnable non-
adjacent dependencies demonstrated evidence of acquiring the novel
non-adjacent structures. Accuracy for participants in the Learnable Pre-
Exposure condition was comparable to that found in Gómez (2002) for
conditions with similar variability in the number of middle elements
(Gómez observed 60% accuracy for a set size of two middle elements
and 66% accuracy for six middle elements), despite our participants
receiving only half of the exposure to the tested non-adjacent relations
compared to participants in Gómez (2002). These results are consistent
with the hypothesis that prior experience shapes the regularities that
learners are able to detect (see e.g., Lew-Williams & Saffran, 2012;
Wang et al., 2017). Language learning is cumulative: learners use past
experience to constrain their expectations about which statistical reg-
ularities to track in novel input (Bates & MacWhinney, 1981; Potter &
Lew-Williams, 2019).

By testing participants' ability to generalize to new items, we found
strong evidence that participants learned the non-adjacent relations and
did not simply memorize the strings that they had encountered before,
extending previous research on non-adjacent dependency learning (e.g.,
Gómez, 2002). Furthermore, the significant correlation between per-
formance on the Familiar X and Novel X Test trials suggests that
learning of these associations was relatively robust and could be ex-
pressed in multiple ways. The stronger correlation among participants
in the Learnable Pre-Exposure condition provides additional evidence
that the pre-exposure experience influenced subsequent learning.

As predicted, participants' learning of non-adjacent dependencies
was enhanced after the Learnable pre-exposure experience, consistent
with our hypothesis that exposure to learnable non-adjacent associa-
tions can boost participants' ability to detect new non-adjacent rela-
tions. However, there is an alternative explanation for the current re-
sults. Because the first and last word in the three-word sentences were
not reliably associated in the Non-Learnable pre-exposure, the Pre-
Exposure Phase could have drawn participants' attention away from
non-adjacent relations and thereby suppressed learning during the
Exposure Phase. On this view, rather than enhancing downstream

Fig. 4. (A) Familiar X and (B) Novel X Test Accuracy in Experiment 1. Error bars represent +1/ −1 SEs.
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learning via exposure to learnable regularities in the Learnable Pre-
Exposure condition, downstream learning may have been suppressed by
altering the regularities to which learners attended in the Non-
Learnable Pre-Exposure condition. A third possibility is that the two
conditions both affected learning, but in opposite directions: the
Learnable pre-exposure enhanced participants' learning of non-adjacent
dependencies, while the Non-Learnable pre-exposure decreased the
likelihood that participants would learn novel non-adjacent de-
pendencies. To address these alternatives, we conducted a second ex-
periment with the same conditions as Experiment 1, but with the ad-
dition of a baseline condition in which participants were not exposed to
either reliable or unreliable non-adjacent dependencies prior to the
Exposure Phase. We reasoned that this condition would allow us to
estimate the degree to which the pre-exposure manipulations in
Experiment 1 aided or suppressed what participants learned about the
non-adjacent dependencies in the Exposure Phase.

3. Experiment 2

In Experiment 2, we conducted a replication of Experiment 1 with
an additional condition (No Pre-Exposure Condition) in which partici-
pants received no pre-exposure experience. We predicted a linear effect
across the three conditions, such that performance would be strongest
in the Learnable Condition, intermediate in the No Pre-Exposure con-
dition, and weakest in the Non-Learnable Condition, with significant
differences between all three conditions. The linear hypothesis and
analytic approach were pre-registered on the Open Science Framework
(https://osf.io/7ewmc).

3.1. Method

3.1.1. Participants
243 students at a large public university in the midwestern United

States (155 female; mean age: 18.5 years, SD = 0.86; 203 native
speakers of English) participated for Introductory Psychology course
credit. Participants were randomly assigned to the Learnable Pre-
Exposure (n = 83), the Non-Learnable Pre-Exposure (n = 79), or the
No Pre-Exposure Condition (n = 81). A pilot study of the No-Pre-
Exposure condition (n = 31) allowed us to estimate the approximate
size of the linear effect of condition together with the data from
Experiment 1 at ηp = 0.034. We set a target sample size of 240 parti-
cipants to ensure that we had over 80% power to detect a linear effect
of this size. Three additional participants were tested but excluded due

to disruptions of the Training Phase (e.g., falling asleep or leaving the
booth to interact with the experimenter).

3.1.2. Stimuli, design & procedure
The stimuli were identical to Experiment 1. The design and proce-

dure for the Non-Learnable and Learnable Pre-Exposure Conditions
were identical to Experiment 1. In the No Pre-Exposure Condition,
participants did not complete a pre-exposure phase of any kind, instead
proceeding straight to the Exposure Phase. As in Experiment 1, the
Exposure and Test Phases were identical across all conditions.

3.2. Results

We fit a logistic mixed-effects model to test the linear hypothesis
that non-adjacent dependency learning would improve across the three
pre-exposure conditions (Non-Learnable < No Pre-
Exposure < Learnable), and followed the single contrast approach
(Richter, 2015) to analyzing planned contrasts. A statistical approach
that tests the residual variance in addition to the planned contrast of
interest by including a second orthogonal contrast (Abelson & Prentice,
1997) leads to identical conclusions. We included Condition (coding the
planned contrast as Non-Learnable: −0.5, No Pre-Exposure: 0, Learn-
able: 0.5 to test for a linear increase across conditions) as a fixed effect.
The final converging model included a by-subject random intercept.
Note that the (non-converging) model with the maximal random effects
structure yields equivalent results (see analysis walkthrough for further
details). Across all test trials, there was a significant effect of Condition
(b = 0.22, Wald 95% CI = [0.03, 0.40], z = 2.31, p = .021), sug-
gesting that there was a linear increase in performance across the three
ordered conditions (see Fig. 5). Overall test accuracy increased from the
Non-Learnable Pre-Exposure condition (M = 52.6%, 95% CI = [50.5%,
54.7%]) to the No Pre-Exposure condition (M = 54.5%, 95%
CI = [51.7%, 57.3%]) to the Learnable Pre-Exposure condition
(M = 57.2%, 95% CI = [53.6%, 60.8%]). A similar linear effect of
Condition was observed for Familiar X Test trials (b = 0.23, Wald 95%
CI = [0.04, 0.43], z = 2.35, p = .019), but this effect was not sig-
nificant when considering Novel X Test trials alone (b = 0.17, Wald
95% CI = [−0.03, 0.37], z = 1.65, p = .098). However, there was no
significant difference in accuracy between Familiar X and Novel X trials
(p = .55) and no significant interaction between test type and condition
(p = .53).

A similar pattern of results was obtained in a signal detection ap-
proach to the analysis, with a linear increase in sensitivity to the non-

Fig. 5. (A) Familiar X and (B) Novel X Test Accuracy in Experiment 2. Error bars represent +1/ −1 SEs.
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adjacent relationships from the Non-Learnable Pre-Exposure condition
(d′ = 0.16, 95% CI = [0.03, 0.29]) to the No Pre-Exposure condition
(d′ = 0.29, 95% CI = [0.09, 0.49]) to the Learnable Pre-Exposure
condition 3(d′ = 0.51, 95% CI = [0.25, 0.76]), b = 0.35, t
(241) = 2.40, p = .017. Participants showed a slight overall bias to-
ward responding that items belonged to the language in all three con-
ditions (Non-Learnable Pre-Exposure condition: c = −0.30, 95%
CI = [−0.39, −0.22]; No Pre-Exposure condition: c = −0.28, 95%
CI = [−0.39, −0.18]; Learnable Pre-Exposure condition: c = −0.20,
95% CI = [−0.27, −0.12]).

Next, we compared each pair of conditions by conducting pairwise
comparisons, using the same modeling approach described above.
Participants showed better learning in the Learnable Pre-Exposure
condition than in the Non-Learnable Pre-Exposure condition, b = 0.22,
Wald 95% CI = [0.03, 0.41], z = 2.26, p = .024, replicating the effect
from Experiment 1. However, we found no significant differences be-
tween the Learnable Pre-Exposure condition and the No Pre-Exposure
condition (b = 0.14, Wald 95% CI = [−0.08, 0.36], z = 1.23, p = .22)
or between the No Pre-Exposure condition and the Non-Learnable Pre-
Exposure condition (b = 0.08, Wald 95% CI = [−0.06, 0.22],
z = 1.09, p = .27). Accuracy reliably differed from chance across all
three conditions (Non-Learnable Pre-Exposure: b = 0.10, Wald 95%
CI = [0.02, 0.19], z = 2.45, p = .014; No Pre-Exposure: b = 0.19,
Wald 95% CI = [0.07, 0.32], z = 3.11, p = .002; Learnable Pre-
Exposure: b = 0.36, Wald 95% CI = [0.18, 0.55], z = 3.79, p < .001).
Additional pairwise comparisons of pre-exposure conditions con-
sidering performance on Familiar X and Novel X trials separately are
reported in the supplementary materials (see S2).

As in Experiment 1, we also evaluated the robustness of participants'
non-adjacent dependency learning by testing the relation between
performance on Familiar X Test trials and Novel X Test trials for par-
ticipants in the three conditions. If participants are using knowledge of
the non-adjacent dependencies to guide their judgments in both the
Familiar X and Novel X trials, then accuracy should be highly corre-
lated, since participants who have successfully learned the non-adjacent
relations should have similar success on both trial types. Performance
on Familiar X Test trials and Novel X Test trials was correlated in the
Learnable Pre-Exposure Condition (r = 0.63, p < .001) and in the No
Pre-Exposure Condition (r = 0.61, p < .001), but not in the Non-
Learnable Pre-Exposure Condition (r = 0.18, p = .12). To test the effect
of condition on the relation between performance on the two test trial
types, we fit a linear model predicting performance on Novel X Test
trials from accuracy on Familiar X Test trials, Condition (contrast coded
as Non-Learnable: −0.5, No Pre-Exposure: 0, Learnable: 0.5), and their
interaction. There was a significant Familiar X Test accuracy by
Condition interaction, suggesting that the strength of the relation be-
tween performance on Familiar X Test trials and Novel X Test trials
increased across the three (linearly ordered) conditions, t(239) = 2.45,
p = .015 (see Fig. S4 in the Supplementary materials). Thus, in the
Learnable Pre-Exposure condition and the No Pre-Exposure condition,
participants who performed with higher accuracy on Familiar X test
trials also tended to perform better on Novel X trials, while participants
in the Non-Learnable Pre-Exposure condition showed a far weaker (if
any) relation in their accuracy between the two test blocks.

3.3. Discussion

In Experiment 2, we provided additional evidence that prior ex-
perience with reliable or unreliable non-adjacent dependencies can
affect subsequent learning. Participants learned novel non-adjacent
dependencies better in the Learnable Pre-Exposure condition than in
the Non-Learnable Pre-Exposure condition, replicating the results from
Experiment 1 (though note that unlike in Experiment 1, there was no
significant difference between these two conditions for Novel X trials,
see supplementary table S2). Most importantly, the results across our
three experimental conditions followed the predicted linear pattern,

with accuracy highest in the Learnable Pre-Exposure condition, lowest
in the Non-Learnable Pre-Exposure condition, and intermediate in the
No Pre-Exposure control condition. The linear increase across the three
conditions was significant when considering Familiar X Test trials
alone, but only marginal when considering Novel X Test trials alone.
This may indicate that the process of generalizing newly learned non-
adjacent dependencies to novel sentences is subject to slightly more
variability than when identifying previously heard sentences. In gen-
eral, performance on Familiar X and Novel X test trials was correlated -
though the correlation was not significant and weaker in the Non-
Learnable Pre-Exposure condition compared to the other two conditions
- and the magnitude of the linear effect across conditions was similar for
both test trial types, suggesting that performance across the two types
of items was highly related. These findings confirm that learning non-
adjacent dependencies is sensitive to previous experience with non-
adjacent patterns and are consistent with the hypothesis that prior ex-
perience has the potential to both facilitate and impair later learning.

Though the main effect was consistent with our linear hypothesis, the
individual comparison between the Learnable Pre-Exposure condition did
not significantly differ from the No Pre-Exposure condition. Thus,
Experiment 2 does not provide conclusive evidence that the higher accu-
racy observed in the Learnable Pre-Exposure condition (compared to the
Non-Learnable Pre-Exposure condition) is truly due to a boost conferred
by exposure to learnable non-adjacent dependencies. Importantly, the No
Pre-Exposure control condition differed from the two pre-exposure con-
ditions in two ways that may compromise its usefulness as a measure of
‘baseline’ performance: First, participants in the No Pre-Exposure condi-
tion experienced a shorter overall training phase, due to the lack of pre-
exposure. Therefore, the slightly improved performance relative to parti-
cipants in the Non-Learnable Pre-Exposure Condition could be simply due
to less fatigue. Second, participants in the No Pre-Exposure condition were
exposed to fewer unique language items– they encountered no items
outside of the Exposure language. As a consequence, participants may
have been less likely to identify test items as “not belonging to the lan-
guage.” Indeed, participants' overall bias for identifying Familiar X Test
items as quantified by the response bias statistic c was higher (indicating a
higher propensity to respond “yes”) in the No Pre-Exposure condition
(c = −0.65, 95% CI = [−0.75, −0.54]) than in the Learnable Pre-
Exposure condition (c = −0.41, 95% CI = [−0.50, -0.32]; t
(162) = 3.36, p < .001), though comparable to the response bias in the
Non-Learnable Pre-Exposure condition (c = −0.57, 95% CI = [−0.68,
−0.47]; t(158) = 0.95, p = .34). These patterns suggest that participants
in the No Pre-Exposure condition had different default response behaviors
in comparison to the Learnable Pre-Exposure condition, which may be
related to the difference in overall language exposure over the course of
the experiment.

We therefore designed an additional experiment to compare parti-
cipants' performance in the Learnable Pre-Exposure condition to a new
condition designed to equate learners' total experience with the lan-
guage materials without biasing them toward or against non-adjacent
dependencies. We constructed a condition in which participants re-
ceived pre-exposure to the same items as in the Learnable Pre-Exposure
condition, but with each word presented in isolation rather than in a
triplet structure. This design removed any manipulation of participants'
expectations regarding connections between the first and last elements
in three-item sentences. If participants in the Learnable Pre-Exposure
condition have higher test accuracy compared to the new unstructured
pre-exposure condition in which words are presented in isolation, this
finding would support our interpretation of the results from Experiment
1 and 2 as being at least partially driven by an increase in performance
after experience with learnable non-adjacent dependencies.

4. Experiment 3

In Experiment 3, we tested the effect of exposure to learnable non-
adjacent dependencies against a new condition (Unstructured Pre-
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Exposure Condition) in which total language exposure was equated
with materials presented in the Learnable Pre-Exposure Condition.
Crucially, the Unstructured Pre-Exposure Condition included a pre-ex-
posure phase consisting of the same words as the pre-exposure in the
Learnable Pre-Exposure Condition. However, the words occurred in-
dividually in random order, instead of in three-word sentences. Thus,
while participants in both conditions heard the same words during the
Pre-Exposure Phase, the Unstructured Pre-Exposure Condition did not
contain triplet structures. We reasoned that this pre-exposure would
provide a baseline condition that should not bias participants' ex-
pectations about non-adjacent structure in subsequent items arranged
into triplet formats. We predicted that participants in the Learnable Pre-
Exposure condition would be more accurate at learning non-adjacent
dependencies than participants in the Unstructured Pre-Exposure con-
dition, showing that exposure to learnable non-adjacent dependencies
boosts non-adjacent dependency learning. We pre-registered our hy-
pothesis and analytic approach for Experiment 3 on the Open Science
Framework (https://osf.io/va657).

4.1. Method

4.1.1. Participants
179 students at a large public university in the midwestern United

States (100 female; mean age: 18.8 years, SD = 1.19; 157 native
speakers of English) participated for Introductory Psychology course
credit. We conservatively estimated the effect size for the difference
between the Learnable Pre-Exposure condition and our previous control
condition with pre-exposure training to be d = 0.42. We calculated that
a sample size of approximately 180 participants was needed to have
80% power, assuming participants in the Unstructured Pre-Exposure
condition would show similar learning to participants in the Non-
Learnable Pre-Exposure condition. Participants were randomly assigned
to the Learnable Pre-Exposure (n = 90) or the Unstructured Pre-
Exposure Condition (n = 89). One additional participant was tested but
excluded due to a technical issue.

4.1.2. Stimuli, design & procedure
The design and procedure for the Learnable Pre-Exposure Condition

were identical to Experiments 1 and 2. In the new Unstructured Pre-
Exposure Condition, participants listened to pre-exposure materials in
which the same individual words occurred with equal frequency as in
the Pre-Exposure Phase of the Learnable Pre-Exposure Condition.
However, the words were presented in list format in one of two random
orders. The duration of silence between each element was 317 ms, such
that the total duration of the pre-exposure phase in the new
Unstructured Pre-Exposure condition was matched to the pre-exposure
phase in the Learnable Pre-Exposure condition (7m25s). We used the
word-level recordings from Experiments 1 and 2 to construct the pre-
exposure. As in Experiments 1 and 2, the Exposure Phase and sub-
sequent tests for learning of the non-adjacent dependencies were
identical in the Learnable and Unstructured Pre-Exposure conditions.

4.2. Results

To test the effect of the Learnable vs. Unstructured pre-exposure
materials, we predicted participants' correct responses across all test
trials from Condition (centered; Unstructured Pre-Exposure = −0.5,
Learnable = 0.5) in a logistic mixed-effects model using the same
analytic approach as in Experiment 1. Collapsing across all test trials,
participants in the Learnable Pre-Exposure Condition (M = 61.6%, 95%
CI = [57.6%, 65.5%]) were more accurate overall than participants in
the Unstructured Pre-Exposure Condition (M = 53.6%, 95%
CI = [50.9%, 56.3%]), b = 0.43, Wald 95% CI = [0.17, 0.68],
z = 3.31, p < .001 (see Fig. 6). There was no significant difference in
accuracy between Familiar X and Novel X trials (p = .60) and no sig-
nificant interaction between test type and condition (p = .87) (see

supplementary section S2 for more detailed information on perfor-
mance on Familiar X and Novel X test trials). A signal detection ap-
proach revealed similar results, with participants showing higher sen-
sitivity to the non-adjacent patterns in the Learnable Pre-Exposure
condition (d′ = 0.79, 95% CI = [0.51, 1.08]) compared to the Un-
structured Pre-Exposure condition (d′ = 0.24, 95% CI = [0.06, 0.42]),
t(177) = 3.23, p = .001. Response bias was comparable between the
two conditions, with participants exhibiting a slight tendency toward
responding “yes” (Learnable Pre-Exposure: c = −0.15, 95%
CI = [−0.23, −0.07]; Unstructured Pre-Exposure: c = −0.16, 95%
CI = [−0.25, −0.08], t(177) = 0.28, p = .78).

We also investigated the relationship between participants' perfor-
mance on the two test trial types (Familiar X Test vs. Novel X Test).
Performance between Familiar X Test trials and Novel X Test trials was
correlated in both the Learnable Pre-Exposure Condition (r = 0.75,
p < .001) and in the Unstructured Pre-Exposure Condition (r = 0.55,
p < .001), though there was a significant interaction between test trial
type and condition, suggesting that the relation between Familiar X and
Novel X Test performance was stronger in the Learnable Pre-Exposure
Condition, t(175) = 2.88, p = .004 (see Fig. S5 in the supplementary
materials). Thus, participants who better recognized the sequences that
they had heard during training were also more likely to demonstrate
generalization of the underlying non-adjacent dependencies, and this
relationship was stronger in the Learnable Pre-Exposure Condition.

4.2.1. Overall analysis across Experiments 1–3
In order to gain a bird's-eye view of the data, we conducted an

exploratory analysis testing the effect of condition on test accuracy
collapsing across all of the data collected in Experiments 1, 2, and 3
(N = 489). Note that this analysis was not pre-registered. We fit a lo-
gistic mixed-effects model predicting participants' trial-by-trial test ac-
curacy from condition. Condition was dummy coded, with the Non-
Learnable Pre-Exposure condition as the reference level. We first fit a
model including the maximal random effects structure (by-participant
and by-item random intercepts and a by-item random slopes for con-
dition) and iteratively pruned the random effects structure until con-
vergence was achieved. The final converging model included a by-
participant random intercept. All (non-converging) models with more
complex random effects structure yield virtually identical parameter
estimates and test statistics.

Pre-exposure condition had a strong overall effect on learning,
χ2(3) = 24.08, p < .001. We next tested follow-up pairwise com-
parisons between the Learnable Pre-Exposure condition and the re-
maining three pre-exposure conditions within the same model by ad-
justing the reference level in the dummy coded condition variable.
Overall, participants in the Learnable Pre-Exposure condition
(M = 59.9%, 95% CI = [57.4%, 62.4%]; d′ = 0.68, 95% CI = [0.50,
0.86]) performed better than participants in the Non-Learnable Pre-
Exposure condition (M = 52.7%, 95% CI = [50.9%, 54.5%]; d′ = 0.17,
95% CI = [0.06, 0.29]; b = 0.36, z = 4.28, p < .001), the
Unstructured Pre-Exposure (M = 53.6%, 95% CI = [50.9%, 56.3%];
d′ = 0.24, 95% CI = [0.06, 0.42]; b = 0.31, z = 3.43, p < .001), and
the No Pre-Exposure condition (M = 54.5%, 95% CI = [51.7%,
57.3%]; d′ = 0.29, 95% CI = [0.09, 0.49]; b = 0.27, z = 2.88,
p = .004). Qualitatively similar results are obtained when considering
only Familiar X trials or Novel X trials and in analogous signal detection
analyses on participants' sensitivity d′ (see Fig. S6 and the supple-
mentary analysis walkthrough for further information).

4.3. Discussion

The results of Experiment 3 support the hypothesis that pre-ex-
posure to learnable non-adjacent dependencies can improve the sub-
sequent learning of challenging non-adjacent dependencies, relative to
experiencing the same language material in unstructured speech.
Participants in the Learnable Pre-Exposure condition were more
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successful at learning novel patterns analogous to the non-adjacent
patterns from their pre-exposure, compared to participants who heard
precisely the same words during pre-exposure without any triplet
structure. Combined with the results from Experiments 1 and 2, these
findings demonstrate that previous exposure to learnable non-adjacent
dependencies increases the likelihood that adult learners will uncover
regularities that are otherwise difficult to detect.

5. General discussion

This set of studies investigated a proposal for how distributional
learning might build on itself, such that learners develop expectations
about linguistic structures that allow them to successfully learn other-
wise difficult patterns. When learners were exposed to patterns with
learnable non-adjacent dependencies, they were subsequently more
successful at learning novel non-adjacent dependencies than if their
previous exposure did not include learnable non-adjacent patterns. We
tested three separate comparison conditions, where participants re-
ceived conflicting prior experience (Exp. 1), no prior experience (Exp.
2), and neutral prior experience (Exp. 3), and across all studies found
evidence for enhanced learning following exposure to learnable reg-
ularities. We also found no evidence to suggest that, given such ex-
perience, participants performed differently when tested on sentences
with familiar medial elements (Familiar X Test) and when they were
required to generalize to sentences with novel medial elements (Novel
X Test). Thus, we have provided evidence that experience can support
the subsequent learning of non-adjacent patterns, and we suggest that
one way that learners may more readily discover challenging novel
regularities in language is to make use of knowledge previously ab-
stracted from similar regularities.

The increase in accuracy for participants in the Learnable Pre-
Exposure compared to the other three conditions was modest: across all
experiments, learners in the Learnable Pre-Exposure condition had
5–7% higher accuracy on average than participants in the other three
experimental conditions without favorable pre-exposure input. This
difference in group accuracy corresponds to a small to moderate effect
size (comparison of the Learnable Pre-Exposure condition to the No Pre-
Exposure condition: Cohen's d = 0.32; Unstructured Pre-Exposure:
d = 0.38; Non-Learnable Pre-Exposure: d = 0.46). While a difference of
5–7% is relatively small in terms of absolute accuracy increase, a boost
in accuracy of this magnitude is consequential in the context of the
difficulty of learning non-adjacent structures. Given that participants

performed only slightly above chance in the exposure phase without
favorable pre-exposure (M = 52%–55% in the three non-favorable
conditions), a small boost in accuracy indicates that learners are more
reliably uncovering structure they might otherwise not learn at all.
Even a short amount of prior experience (~8 min) with non-adjacent
structure in more learnable circumstances can provide an advantage in
uncovering similar structures in more challenging contexts.

Adult participants' improved performance after exposure to related
structures is consistent with evidence from both infants and adults
showing that prior experience influences learners' expectations about
the structure of novel linguistic materials (e.g., Lew-Williams & Saffran,
2012; Thiessen & Saffran, 2007; Wang et al., 2017). It has been sug-
gested that past experience may guide learners to identify similar
structures to those stored in memory (Thiessen, Kronstein, & Hufnagle,
2013). On this view, once participants in the Learnable Pre-Exposure
condition had learned the associations between the monosyllabic first
and third elements during the pre-exposure phase, this learning ex-
perience allowed them to better detect associations between new
monosyllabic items. This explanation suggests that learners should be
most likely to generalize across tokens that are highly similar, as ob-
served in a number of prior studies (Christiansen & Conway, 2006;
Gebhart, Newport, & Aslin, 2009; Newport & Aslin, 2004; Seidl-
Rathkopf, Turk-Browne, & Kastner, 2015), but they might not be able to
draw on experience with related structures when the target items are
perceptually unrelated.

Another possibility is that experience with learnable dependencies
between non-adjacent items draws attention to subsequent non-ad-
jacent relations. Shifting attention toward non-adjacent dependencies
can support learners' ability to detect novel regularities (Pacton &
Perruchet, 2008). In addition, past studies have demonstrated that
learnable patterns may automatically attract attention, and learners are
more inclined to attend to elements and positions that have previously
included predictable items (e.g., Gerken, Balcomb, & Minton, 2011;
Turk-Browne, Scholl, Johnson, & Chun, 2010; Zhao, Al-Aidroos, &
Turk-Browne, 2013). Therefore, prior linguistic experience may en-
courage learners to detect regularities that occur in similar contexts as
patterns that they have learned in the past, even when the items are
novel.

In the current design, we chose to highlight non-adjacent regula-
rities by introducing intervening variability, but a number of different
cues have also been shown to support learning (Grama et al., 2016;
Peña et al., 2002; see Wilson et al., 2018 for a review). Other types of

Fig. 6. (A) Familiar X and (B) Novel X Test Accuracy in Experiment 3. Error bars represent +1/ −1 SEs.
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pre-exposure materials may be equally helpful in preparing learners to
discover the relations in the exposure phase. For example, we could
have increased the salience of the non-adjacent items in the pre-ex-
posure phase, such as introducing phonological cues to underscore the
associations between the critical elements (Gervain & Endress, 2017;
van den Bos et al., 2012). It may be that any cue that facilitates learning
of the initial relations has the potential to bolster later learning, but
additional studies will be needed to test whether variability is a parti-
cularly powerful cue in learning, or if other cues are similarly ad-
vantageous.

Overall, our results are consistent with the view that adults' lan-
guage learning is constrained by prior language experience and
knowledge (Bates & MacWhinney, 1981; Seidenberg & Zevin, 2006).
Learners do not simply blindly track statistical relations in their input,
but instead use their experience to determine which regularities are
likely to be most meaningful (e.g., Frank & Tenenbaum, 2011; Lew-
Williams & Saffran, 2012; Mintz, 2002; Potter & Lew-Williams, 2019).
In these studies, participants who had experience with reliable asso-
ciations were then able to detect patterns in novel materials. This
pattern of performance is consistent with the view that learners gra-
dually accumulate knowledge over time that prepares them to learn
complexities found in natural language (e.g., Seidenberg, MacDonald, &
Saffran, 2002; Thiessen & Saffran, 2007).

These cumulative effects of learning are especially apparent in
adults (who already have vast experience with their native language)
that are learning a second language. Adult second language learners are
better able to acquire constructions that are consistent with the reg-
ularities of their native language (LaCross, 2015), providing additional
support for the view that some of adults' difficulties in learning a second
language may be attributable to biases derived from their experience
with their first language (e.g., Marchman, 1993; Seidenberg & Zevin,
2006). For example, native English speakers have significant difficulty
with grammatical gender and often struggle to assign the correct article
to a noun, but learners whose first language uses gender are more
successful (Grüter, Lew-Williams, & Fernald, 2012; Guillelmon &
Grosjean, 2001; Sabourin, Stowe, & de Haan, 2006). Lifelong language
experience encourages learners to pay attention to or ignore some
structures (such as associations between articles and nouns) rather than
others (see also, e.g., Siegelman, Bogaerts, Elazar, Arciuli, & Frost,
2018).

The question of how past experience affects subsequent language
learning opens a number of future directions. One particularly intri-
guing direction is studying individual differences in how people extract
regularities from language patterns. Participants showed substantial
variability in their ability to learn the non-adjacent dependencies across
all experiments and conditions (see the spread in average accuracy in
Figs. 4, 5, and 6), with a large set of participants showing chance or
near-chance performance and a subset of participants showing virtually
perfect performance. While some research has investigated individual
differences in statistical learning and their relation to language pro-
cessing and knowledge (e.g., Misyak & Christiansen, 2012; Misyak,
Christiansen, & Tomblin, 2010), we still know little about what un-
derlies differences in learning statistical patterns such as non-adjacent
dependencies between learners. Given the role of past language ex-
posure in shaping later learning, a particularly fruitful direction for
future research may be to explore the degree to which particular lin-
guistic experience predicts individual differences in non-adjacent de-
pendency learning.

Another question left open in the current work is the relationship
between the learnability of the target structure and the degree to which
learning can be improved with informative initial experience. While
learning the non-adjacent dependencies in low variability contexts is
difficult, participants still performed slightly above chance in dis-
covering non-adjacent relations absent any pre-exposure (M = 54.5%
in the No Pre-Exposure condition of Experiment 2). In other words, the
non-adjacent associations presented during the Exposure Phase were to

some extent learnable. It is possible that some degree of learnability is
crucial for learning to be malleable to informative past experience, as
observed in the current studies. However, it is inherently difficult to
show that some language structure is truly unlearnable (e.g., Chater &
Manning, 2006; Regier & Gahl, 2004; St Clair, Monaghan, & Ramscar,
2009), since absence of evidence (for learnability) is not equivalent to
evidence of absence (i.e., that the structure is unlearnable). In fact,
learning non-adjacent relations with similarly small set sizes in the
middle word has sometimes been described as not learnable or only
marginally learnable absent additional cues, based on the absence of
above-chance performance (Gómez, 2002; Newport & Aslin, 2004; von
Koss Torkildsen, Dailey, Aguilar, Gómez, & Plante, 2013; though studies
also sometimes find learning even with low variability in the middle
elements, e.g., Vuong et al., 2016), which is not surprising given the
small learning effect observed in our sample. Future work could address
this question by systematically manipulating the difficulty of the to-be-
learned language structure to test whether more difficult structures are
more or less amenable to supportive past experience.

To conclude, we provide evidence that relatively brief experience
can have substantive consequences for the types of patterns to which
learners are sensitive. Non-adjacent dependencies may be relatively
difficult to learn in isolation, but previous language experience and
accumulated knowledge can make these regularities easier (or in some
cases, harder) to learn by helping learners recognize and attend to
important patterns in their language input. Past language experience
matters because it sets the stage for later learning, building a scaffold to
acquiring otherwise difficult patterns.
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