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Learning by predicting: How predictive 
processing informs language development 
Abstract: An increasingly influential attempt to provide a unified theory of the 
mind is grounded in the notion of prediction. On this account, our minds are pre-
diction engines, continuously matching incoming input to top-down expecta-
tions. Higher-level predictions or expectations are generated by internal cogni-
tive models at multiple hierarchical levels that jointly serve to minimize 
prediction error at lower levels in the information processing hierarchy. In lan-
guage research, prediction has become an increasingly influential approach to 
understanding how language comprehension unfolds in real time. But how can 
predictive processing inform our understanding of how we come to learn lan-
guage in the first place? In this review, I consider how prediction-based theories 
of the mind can aid in explaining how language development unfolds. First, I 
review research in perception and language on predictive processes and assess 
the degree to which they are found in infancy. Next, I consider how prediction-
based mechanisms contribute to our understanding of learning, as well as the 
kinds of patterns that models grounded in prediction can learn. I review research 
on infants’ prodigious ability to track novel patterns and relate these statistical 
learning abilities to prediction-based explanations. Finally, I sketch how predic-
tion-based accounts fit within current theoretical positions and debates in the 
field of language development and suggest directions for future research into 
how predictive processes support language learning.  

1 Introduction 

At the heart of cognitive development lie two fundamental mysteries:1 What is the 
nature of the infant mind, and how does an infant mind develop into an adult 
mind? The answers to these questions have historically diverged radically, with 
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some suggesting the infant mind initially encounters the world as a “blooming, 
buzzing confusion” (James 1890: 488), while others suggest that the infant mind 
is from the beginning endowed with rich, adult-like cognitive structure and 
knowledge (Chomsky 1959, 1980). Modern approaches to cognitive development 
in general and language development in particular explore different solutions 
that lie somewhere between these two extremes, either by positing strong conti-
nuities in knowledge and ability between the infant and the adult mind (Spelke 
and Kinzler 2007; Baillargeon and Carey 2012; Dehaene-Lambertz and Spelke 
2015) or by exploring how adult-like cognitive structure and knowledge can 
emerge despite apparently humble cognitive beginnings (Elman et al. 1996; 
McClelland et al. 2010; Smith and Thelen 2003). Yet the underlying questions are 
still fundamentally unresolved. 

What makes the mystery of early cognition and development so difficult is 
that the most basic question in psychology itself remains elusive: how does the 
mind work? What are the general organizing principles underlying how we learn 
about and engage with the world? One increasingly influential proposal is 
grounded in the notion of prediction (Clark 2013; Hohwy 2014; Friston 2010; Bar 
2009). In these accounts, the brain is conceptualized as “proactive”, in that it 
“continuously generates predictions that anticipate the relevant future” (Bar 
2009: 1235). On this view, our minds are essentially prediction engines, continu-
ously deploying top-down expectations to anticipate what will occur next and 
reduce errors that occur when these expectations do not match incoming input.  

The view of the mind as a prediction engine has particularly gained traction in 
the study of language processing (Kuperberg and Jaeger 2016; Huettig 2015; Picker-
ing and Garrod 2007; Pickering and Clark 2014; Kutas, Federmaier and Urbach 
2014). Prediction-based accounts of cognitive processing are intuitively appealing 
in the domain of language, because they make sense of what otherwise appears to 
be an almost impossible task: as each sentence unfolds, a language comprehender 
must parse a continuous stream of incoming fluctuations in sound into a coherent 
collection of phonemes, syllables, words, and sentences while decoding their 
meaning within mere fractions of a second. The only hope for the hearer would 
seem to involve bringing to bear a strong set of expectations about incoming lin-
guistic elements in order to arrive at the speaker’s intended message quickly. 

Given its merit as key explanatory principle in the functioning of the mind, 
can prediction theory help us solve the fundamental questions in language de-
velopment? In the following article, I explore what prediction can tell us about 
how infants develop and learn language. In the first part, I review evidence from 
sensory and language processing for prediction both in adults and in infants. 
Next, I investigate the relationship between prediction and learning, particularly 
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how they relate to infants’ powerful pattern-learning abilities. In the final section, 
I consider where prediction-based approaches fit within classic theoretical de-
bates in language development. 

2 Minds as the products of predicting brains: The 
(abridged) case for prediction 

2.1 What is prediction? 

Predictive processing accounts seek to explain the key mechanisms governing 
how the brain works. There are many different families of predictive processing 
accounts (Friston 2010; Rao and Ballard 1999; Hawkins and Blakeslee 2004; 
O’Reilly, Wyatte and Rohrlich 2014; Clark 2013; Hohwy 2014; Bar 2009; Kuperberg 
and Jaeger 2016), but they all share the basic idea that prediction is the key prin-
ciple to how the brain – as well as the mind – functions. The goal of the brain is 
to predict incoming input – what will occur in the very next moment. In order to 
make these predictions, the brain develops a hierarchical model, with each level 
attempting to predict the input it receives from the level below. The overarching 
goal of the system is to reduce prediction error as best as possible. Operating un-
der these constraints, the brain builds ever richer and more precise models of its 
environment, all in service of making efficient and accurate predictions. 

Prediction-based accounts come in many flavors. One particularly influential 
account introduces the principle of predictive coding (Rao and Ballard 1999; Fris-
ton 2010; Clark 2013). What gives this account its name is how it reconceptualizes 
the nature of neural signals. Rather than representing information about the cur-
rently processed stimulus, neural signals encode prediction errors: discrepancies 
between predicted and actual input. These prediction errors then feed forward, 
becoming the input to the next level of cortical hierarchy. This level in turn at-
tempts to predict incoming signals and passes error signals to the next level of 
the hierarchy, and so on. In this sense, neural responses are “signaling the news” 
(Clark 2015: 18), passing along unexplained or unpredicted information in the in-
coming signal. 

In this paper, I will not seek to weigh different prediction accounts against 
one another, but instead use basic ideas shared among all of them to illuminate 
language development. I will focus in particular on how prediction-based ac-
counts have begun to be applied to language processing and learning. There are 
two major ways in which language researchers have used the term prediction, in 
a broad sense and a narrower sense. In the broad sense, prediction refers to the 
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idea that the mind is constantly engaged in a process of probabilistic inference. 
As Kuperberg and Jaeger (2016) put it in an influential review: 

… prediction implies that, at any given time, we use high-level information within our rep-
resentation of context to probabilistically infer upcoming information at this same higher-
level representation. (Kuperberg and Jaeger 2016: 47) 

On this view, the mind is continuously engaged in a cycle of updating its beliefs 
and expectations at multiple levels of its hierarchical representation of incoming 
language input.  

A related, but somewhat more narrow sense focuses on the timing of activa-
tions in cognitive processing. Kutas, Federmaier and Urbach (2014) define pre-
diction as encompassing any form of cognitive processing “involv[ing] the acti-
vation of or information about likely upcoming stimuli, prior to their receipt, that 
plays a causal role in stimulus processing” (Kutas, Federmaier and Urbach 2014: 
649). Note that predictions, on this definition, can take many forms: they can be 
consciously or unconsciously generated, they may be explicit or implicit, they 
can be more fine-grained or more coarse-grained, and they can be generated at 
multiple levels. For instance, when processing a sentence such as I love …, pre-
diction may involve an expectation2 for the specific word that will come next (ba-
bies, for instance), for a particular meaning to be expressed (‘something cute or 
lovable’), for a particular grammatical structure (e.g. a noun phrase), for a partic-
ular phonetic feature (e.g. that the next word will begin with a voiced consonant), 
and so on.  

One of the recurring difficulties in interpreting the psychological literature is 
determining what “counts” as evidence for prediction, in particular disentan-
gling prediction effects from effects of integration or facilitation (Kutas, Feder-
maier and Urbach 2014; Kuperberg and Jaeger 2016). In language processing, for 
instance, if participants respond faster in a serial reading task to a more predict-
able word as compared to a less predictable word, this finding can often be ex-
plained in two ways: it could be that the previous linguistic context is allowing 
participants to begin activating information relevant to the word before encoun-
tering it (pre-activation) or it could be that the word, once encountered, is more 
easily integrated with the previous linguistic context (integration). In the broad 
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2 While it may not always be practical to distinguish between predictive behaviour and the cog-
nitive construct of prediction, I will generally use the terms “expectation” or “expectancy” to 
refer to the cognitive processing that generates a prediction, and “anticipation” to refer to be-
havioural responses that reflect these predictions (Haith, Hazan and Goodman 1988; Canfield et 
al. 1997). 
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sense of prediction in terms of probabilistic inference, this distinction collapses 
somewhat, since probabilistic expectations should lead to both pre-activating 
and integrating cognitive processes further down the hierarchical processing 
stream. In the following sections, I will review evidence that supports an expla-
nation in terms of predictive processing, both in the broad sense of probabilistic 
inference and in the narrow sense of pre-activation, but this evidence will also be 
interwoven with a broader psychological literature, some of which could be in-
terpreted as effects of pre-activation or as effects of integration. In all cases, I 
hope to show that adopting the lens of prediction leads to a fruitful interpretation 
of a wide variety of experimental evidence. 

What makes predictive processing accounts of the brain so powerful is their 
ability to unify a vast amount of what we know about behaviour across a variety 
of domains, including classically perceptual processes such as vision and the 
higher-level cognitive processes involved in language comprehension. Why does 
the brain respond to the absence of expected stimuli? Why are we subject to “gar-
den-path” effects in language processing? Why are infants drawn to regularities, 
and why do they seem to automatically detect patterns in their environment? In 
the following sections, I briefly review how prediction unifies these disparate phe-
nomena, to provide an intuition as to why prediction is a useful unifying frame-
work for understanding cognition. While by no means a comprehensive treatment 
of predictive processing accounts, the goal is to offer a glimpse of the explanatory 
breadth and depth of this family of accounts and to motivate why prediction is an 
attractive lens through which to consider the development of the mind. 

2.2 Processing expected and unexpected sensory input 

Some of the most compelling evidence that the brain is consistently developing 
expectations about what it will encounter in the world comes from studying what 
happens when predictions go wrong. A vast number of studies have studied cor-
tical responses to unexpected events (e.g. den Ouden et al. 2009; Bendixen et al. 
2014; Chennu et al. 2013; Wacongne et al. 2011). Of particular interest are cases in 
which an expected stimulus does not appear. A purely bottom-up account of cor-
tical processing predicts that early sensory areas should show little or no activa-
tion when an expected stimulus is absent, since the sensory system is not receiv-
ing any bottom-up input from the world. Instead, studies that investigate neural 
response patterns in sensory cortex to withheld stimuli find very different results: 
early sensory areas show strong activation in the absence of bottom-up input 
when a sensory stimulus is expected. For instance, when processing temporal 
auditory sequences, sensory cortices show strong activation when expected 
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items in the sequence are omitted, i.e. even in the absence of a stimulus 
(Wacongne et al. 2011; Wacongne, Changeux and Dehaene 2012). This has led re-
searchers to reinterpret early cortical responses associated with unexpected 
events as signatures of prediction. For instance, Wacongne et al. (2012) offer a 
model of the mismatch negativity (MMN) – an event-related potential that regis-
ters roughly 100–200 ms after an infrequent unexpected auditory event3 – as in-
dexing a prediction violation, which explains why this characteristic signature is 
found in response to the omission of expected input.  

A converse result is that cortical activity can disappear even in the presence 
of a stimulus, provided that the stimulus is highly predictable. For instance, in 
functional magnetic resonance imaging (fMRI) studies, cortical activity elicited 
by a stimulus is increasingly reduced each time that stimulus is repeated, a phe-
nomenon known as repetition suppression (Grill-Spector, Henson and Martin 
2006). Recent studies suggest that the reduction in cortical activity results from 
the stimulus becoming progressively more precisely predicted (Todorovic and de 
Lange 2012; Todorovic et al. 2011; Andics et al. 2013; Summerfield et al. 2011; Sum-
merfield et al. 2008). The key finding is that repetition suppression is modulated 
by how predictable the repetition is: when a repetition is more frequent or pre-
dictable, cortical activity is suppressed more strongly, presumably reflecting 
more accurate and precise predictions (e.g. Summerfield et al. 2008).  

Further evidence that the cortex is generating active predictions about in-
coming perceptual input comes from studies that show that participants’ expec-
tations bias early visual representations (Kok et al. 2013; Kok, Failing and de 
Lange 2014; Kok, Jehee and de Lange 2012). For instance, in one study (Kok et al. 
2013), participants’ expectations about the orientation of an upcoming visual 
stimulus was manipulated with an auditory cue played shortly before the visual 
input – different auditory cues systematically predicted specific orientations. The 
central result was that information about the orientation of the stimulus could be 
reconstructed from early visual areas prior to the actual onset of the visual stim-
ulus, demonstrating that predictions about the upcoming visual input reshaped 
early visual representations. The picture emerging from these studies is that the 
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3 Event-related potentials (ERPs) are changes in electrical brain activity time-locked to a specific 
sensory or cognitive event that are measured through electroencephalography (EEG) – an elec-
trophysiological method used in cognitive neuroscience to detect electrical activity in the brain 
using electrodes placed on the scalp. ERPs can be described and analysed as waveforms with 
peaks and troughs that are thought to index different cognitive processes. The MMN is a partic-
ular ERP component that is typically found 100–200 ms after the onset of an infrequent or sur-
prising (“oddball”) element in a sequence of stimuli (usually a visual or an auditory sequence). 
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perceptual system rapidly generates predictions – in the sense of pre-activation – 
about upcoming sensory input. 

2.3 A garden of forking paths in language processing 

Contextual effects pervade language (Kuperberg and Jaeger 2016). For instance, 
a classic finding in language comprehension is the so-called “garden-path” phe-
nomenon. If an ambiguous phrase such as (1) is resolved into a less frequent syn-
tactic parse such as (2), as opposed to a more salient syntactic interpretation such 
as (3), this leads to processing difficulty that manifests as slower reading times or 
worse comprehension (MacDonald, Just and Carpenter 1992; Ferreira and Clifton 
Jr. 1986; Ferreira and Patson 2007). 

(1) The researcher expected to finish the paper … 
(2) … fell asleep. 
(3) … by the end of the day. 

Another example is that people react faster to and spend less time processing pre-
dictable than unpredictable words across a number of paradigms (Stanovich and 
West 1979, McClelland and O’Regan 1981; Staub 2015).  

A longstanding controversy in the field is whether these contextual effects 
are best understood as effects of prediction or as effects of integration (Kuperberg 
and Jaeger 2016; Kutas, Federmaier and Urbach 2014). Responses to garden-path 
sentences might be slower because the system must explain prediction error, or 
because the system must engage more cognitive resources to integrate the end of 
the sentence with the preceding linguistic context. However, recent studies have 
provided strong evidence that the language comprehension is consistently en-
gaged in prediction.  

First, relatively abstract linguistic expectations can modulate sensory pro-
cessing in its earliest stages. For instance, expectations about the form of words 
belonging to different syntactic categories can affect visual processing at early 
stages when reading sentences (Dikker et al. 2010). Second, recent research has 
provided compelling evidence that words become pre-activated prior to their oc-
currence during language comprehension. A classic finding from electroenceph-
alography (EEG) studies is that semantically unexpected words generate a char-
acteristic neural response about 200–500 ms post word onset, the N400 (Kutas 
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and Hillyard 1980).4 Interestingly, the amplitude of the N400 correlates strongly 
with how expected a word is based on the preceding context (Kutas and Hillyard 
1984; Kutas and Federmaier 2011). In one of the strongest demonstrations that the 
N400 reflects prediction, rather than integration, DeLong et al. (2005) presented 
participants with sentences which generated expectations for specific nouns (e.g. 
The day was breezy so the boy went outside to fly …). Crucially, the form of the 
indefinite article preceding the noun (a or an) could be consistent or inconsistent 
with the expected noun (in this example kite), but both articles were equally easy 
to integrate with the preceding context. DeLong et al. found an N400 effect in 
response to the inconsistent articles (an), before encountering an unexpected 
noun (airplane), an effect that could only be found if participants were pre-acti-
vating the corresponding noun.5 This study, along with many others using a sim-
ilar design, show that – at least in some contexts – language comprehenders are 
generating expectations about upcoming words (Wicha et al. 2003; Wicha, 
Moreno and Kutas 2004; Van Berkum et al. 2005; Brothers, Swaab and Traxler 
2015; Wicha, Moreno and Kutas 2003) and word classes (Szewczyk and Schriefers 
2013). These results are key highlights within a converging literature suggesting 
that prediction – in the sense of generating expectations about upcoming lan-
guage input – is integral to language processing (Kuperberg and Jaeger 2016). 

3 Infants as predictors 

There is a substantial amount of evidence that has accrued for the predictive pro-
cessing account in adults. But how well does this account mesh with existing ev-
idence in developmental research? Are babies’ brains fruitfully construed as pre-
diction engines? None other than Jean Piaget noted that “anticipatory function … 
is to be found over and over again, at every level of the cognitive mechanisms and 
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4 The N400 is a component of an event-related potential (ERP) – see also fn. 3 – first observed 
in response to semantically unexpected words. The name is derived from the fact that the com-
ponent is associated with a negative deflection in the ERP waveform around 400 ms after the 
onset of an unexpected word/stimulus. 
5 There is currently some controversy surrounding the specific anticipatory results from Delong 
et al. (2005) following recent failures to replicate this result (Ito, Martin, and Nieuwland 2017; 
Nieuwland et al. 2018) and subsequent rebuttals from the original authors (DeLong, Urbach, and 
Kutas 2017a, 2017b). Regardless of the final determination regarding this particular result about 
pre-activation on the phonological level of words, there is a broad literature supporting evidence 
for the pre-activation of words more generally across different contexts and languages (see the 
studies cited in the text and Kuperberg and Jaeger 2016 for a review). 
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at the very heart of the most elementary habits, even of perception” (Piaget 1971: 
19). In the following section, I invite the reader to see the developmental literature 
through the lens of prediction. Prediction casts new light on a vast number of 
phenomena spanning all domains of cognitive developmental research, includ-
ing perception and language, and even the very methods cognitive development 
researchers employ to understand the infant mind. 

3.1 Looking to predict: Infant looking behaviour 

Some of the most important and influential insights in the field of infant devel-
opment stem from measurements of infants’ gaze and looking preferences (Hes-
pos and Spelke 2004; Wynn 1992; Baillargeon, Spelke and Wasserman 1985; Bail-
largeon and Carey 2012; Gergely et al. 1995; Fantz 1961; 1963). Yet there is still 
substantial debate in the field as to what various behavioural measurements re-
flect in terms of infants’ processing, leaving open the question of “what’s in a 
look” (Aslin 2007). A particularly vexing question is why infants sometimes show 
novelty preferences, looking longer to events that are more surprising or less con-
sistent with previous experience, but on other occasions show familiarity prefer-
ences, looking longer to events that are more expected or consistent with previ-
ous experience  

The traditional view of infant looking times is that they are reactions to visual 
or auditory experience, that may be driven by exogenous factors (e.g. how salient 
a stimulus is) or endogenous factors (e.g. how robustly a stimulus is encoded in 
memory; Aslin 2014). More recently, infant looking behaviour has begun to be re-
conceptualized as a more active process (Kidd, Piantadosi and Aslin 2012; Kidd 
and Hayden 2015). On this model, infants’ looking behaviour may reflect an ac-
tive attempt to sample information from the environment. This perspective is con-
sistent with a predictive processing account, whereby infants’ looking behaviour 
should reflect a continuous process of collecting information about the visual en-
vironment to reduce uncertainty (Itti and Baldi 2009; Henderson 2017). 

A key result in understanding infants’ gaze behaviour as a more active pro-
cess is the so-called Goldilocks effect (Kidd, Piantadosi and Aslin 2012, 2014). Both 
in the visual and in the auditory domain infants appear to prefer events that are 
“just right” in terms of their predictability: neither perfectly predictable nor com-
pletely predictable. For instance, in Kidd et al. (2012), infants viewed objects dis-
appearing and reappearing behind a screen. By varying how predictable the pat-
tern of reappearance of an object was from behind a particular screen, Kidd et al. 
obtained a measure of a given event’s predictability or complexity. For example, 
if an object can appear from behind one of two screens, an extremely predictable 
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event is one in which an object appears from behind screen 1 after having ap-
peared repeatedly from screen 1 on previous events (e.g. creating the sequence 1–
1–1–1). On the other end of the continuum, if an object suddenly appears from 
behind screen 2 after having only appeared from behind screen 1 (i.e. the se-
quence 1–1–1–2), then the event is much more surprising. An event can also lie 
in between these two extremes, creating a pattern that has some variability, but 
is also somewhat predictable (e.g. 1–2–1–2). Crucially, the predictability or com-
plexity of a particular event within a pattern influenced how long infants would 
continue to watch the event sequence. Infants showed a U-curve preference, with 
infants looking longest to patterns that were neither too predictable nor too un-
predictable (i.e. events such as 1–2–1–2 in the example above). This U-shaped 
curve held for every individual infant, not just for the group of participants over-
all (Piantadosi, Kidd and Aslin 2014).  

These results lend themselves to an account of infant looking behaviour 
based on prediction: if infants organize their gaze behaviour around minimizing 
prediction error, their looking behaviour will depend on how successfully they 
can reduce prediction error for a given visual event. If an event is highly predict-
able, the visual system will rapidly learn to predict upcoming events and will 
move on from the current event sequence to make predictions about other aspects 
of the environment. If, on the other hand, the event is too unpredictable, the sys-
tem will quickly plateau in its ability to reduce prediction error and therefore seek 
out other events where prediction error can be reduced more efficiently. When 
stimuli lie between these two extremes, they will hold infant gaze longer to the 
extent to which longer looking continues to reduce prediction error. Sequential 
patterns that will hold gaze the longest are those that lie at the “sweet-spot” of 
informativeness, where continuing to look improves infants’ predictions regard-
ing the task currently in focus (e.g. in the case of the Kidd et al. task, predicting 
where an object will appear next in a sequence). 

This view of infant looking behaviour offers a principled way to predict when 
infants will show novelty or familiarity preferences. Looking preferences will ul-
timately depend on the relative effectiveness with which prediction error can be 
reduced for novel and familiar stimuli. This is consistent with the fact that infants 
often show novelty preferences in studies with lengthy habituation phases, e.g. 
in statistical learning studies (Saffran, Aslin and Newport 1996; Aslin 2014): in-
fants in these studies have minimized prediction error to the familiar stimulus 
and thus spend more time looking at the novel stimulus to reduce prediction er-
ror. It also explains why infants often show familiarity preferences in studies in 
which infants listen to their native language without an extended habituation 
phase (Jusczyk and Aslin 1995). Fluent speech provides ample opportunity for an 
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infant’s processing system to attempt to reduce prediction error. Similarly, this 
explains why infants show a preference for speech rather than a variety of non-
speech stimuli (Vouloumanos et al. 2010; Vouloumanos and Werker 2004) and 
for their native language rather than a non-native language (Moon, Cooper and 
Fifer 1993). Infants’ predictive models of their auditory environment in these 
cases are more effective in reducing prediction error for speech, and particularly 
for their native tongue, which even in the absence of a habituation phase is a rich 
source of prediction error that can be productively reduced. 

On a predictive processing account, looking times are more than simply 
measures of a learning outcome or an infant’s ability to discriminate two different 
stimuli. Longer looking times reflect an active process of predicting upcoming 
stimuli and integrating information about the outcome of these predictions into 
a dynamically updated model of the world. This view of looking times brings into 
focus that these looking events are themselves learning events.  

3.2 Vision and multimodal sensory processing 

From a young age, infants rapidly build expectations and anticipate what will 
occur in their environment. When viewing a video in which engaging stimuli oc-
cur in one of two possible locations (either on the left or the right side of a screen), 
infants as young as 2–3 months of age begin to anticipate the onset of an upcom-
ing visual stimulus, as measured by fixation shifts to the likely location of the 
stimulus that begin before an eye movement could be programmed in reaction to 
the onset of the stimulus (Canfield and Haith 1991; Haith, Hazan and Goodman 
1988; Canfield et al. 1997). The extent to which infants show anticipatory shifts 
depends on the predictability of the sequence: by 3 months, infants will show 
more anticipatory shifts when a sequence is regular (e.g. when the visual stimu-
lus alternates between two locations) than when it is irregular (e.g. when the next 
stimulus location cannot be predicted from the previous two or three events in 
the sequence; Canfield and Haith 1991). By 12 months of age, infants show regular 
anticipatory looks even to more probabilistic event sequences, and their antici-
patory fixations become increasingly accurate (Romberg and Saffran 2013).  

The fact that infants will reliably attempt to predict upcoming visual events 
is exploited by various research paradigms that measure infants’ learning and 
knowledge in terms of anticipatory behaviour. In anticipatory eye movement par-
adigms, researchers expose infants to associations between a cue (e.g. an audi-
tory cue such as a word) and a reinforcing event occurring in a particular location 
(e.g. a circle appearing on the left or on the right side of the screen). By 6 months, 
infants will regularly anticipate the reinforcing event’s location on perceiving the 
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cue. Researchers can then infer that infants distinguish two cues (e.g. the differ-
ent words) if they differentially predict where the reinforcing stimulus will appear 
on the screen based on the specific cue presented. This paradigm has used in-
fants’ anticipatory behaviour to demonstrate the types of auditory categories 6-
month-olds form (McMurray and Aslin 2004) or to investigate how 7-month-olds 
rapidly and flexibly learn to distinguish speech patterns (Kovács and Mehler 
2009a, 2009b). Though not always considered in the context of predictive pro-
cessing accounts of the mind, these studies reveal that infants form expectations 
about where visually interesting events will occur after only brief exposure to pre-
dictive cues, and actively orient their attention in anticipation of visual events. 

While these studies show that infants anticipate where perceptual events will 
occur, it leaves open the question of whether infants predict what they will see, 
i.e. the perceptual content of the events themselves. Recent work investigating 
the neural processing in cross-modal priming events provides compelling evi-
dence that by 6 months of age, infants’ perceptual processing reflects sensory ex-
pectations (Emberson, Richards and Aslin 2015; Kouider et al. 2015). In one study, 
Emberson and colleagues (2015) measured changes in blood oxygenation using 
functional near-infrared spectroscopy (fNIRS) while 6-month-old infants 
watched movies in which novel sounds and visual stimuli were paired. After es-
tablishing the mutual predictability of sound and visual stimuli, infants saw a 
series of trials either consistent with the induced sensory expectation (i.e. in 
which both auditory and visual stimuli appeared; about 80% of the trials) or in-
consistent, such that the expected visual stimulus was omitted (about 20% of tri-
als). The striking finding was that infants’ occipital cortex responded not only 
when a visual stimulus appeared, but also when an expected visual stimulus was 
omitted. Importantly, infants’ occipital cortex did not show similar levels of acti-
vation in a control condition in which infants did not learn an association be-
tween visual and auditory stimuli. Infants’ cortical responses in this condition 
reflected the type of incoming input: when an auditory stimulus was presented 
without a visual stimulus, temporal cortex, but not occipital cortex, showed 
changes in blood oxygenation level. Infants who had formed associations be-
tween auditory and visual stimuli, on the other hand, showed a strong occipital 
response to the exact same auditory stimulus. Infants’ cortical responses do not 
simply reflect bottom-up visual input; instead, early cortical responses reflect in 
part what infants expect to see. 

Infants also rapidly form expectations about patterns in upcoming auditory 
input. For instance, in studies measuring event-related potentials in infants, 3-
month-old infants exposed to sequences of repeated auditory stimuli (such as the 
syllable i, i.e. i–i–i–i) will show an early cortical mismatch response analogous 
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to the adult MMN when a novel auditory oddball (such as the syllable a) breaks 
this repetition (Dehaene-Lambertz and Dehaene 1994). Moreover, infants show a 
later cortical response (the late negative slow wave, NSW) depending on whether 
the sequence as a whole (regardless of local deviations) is expected (Basirat, 
Dehaene and Dehaene-Lambertz 2014). In light of predictive coding explanations 
of early mismatch responses in adults (Wacongne, Changeux and Dehaene 2012; 
Wacongne et al. 2011), these patterns of cortical responses suggest that infants 
form both local (about the next syllable in a sequence) and global (about the fre-
quency of a sequence as a whole) predictions about auditory sequences (Basirat, 
Dehaene and Dehaene-Lambertz 2014). 

Together, these results provide diverse evidence that infants’ early visual and 
auditory processing is future-oriented: from an early age and across a variety of 
tasks, infants generate predictions about upcoming perceptual input and organ-
ize their behaviour in anticipation of expected perceptual events.  

3.3 Language 

By the latter half of their first year, infants have begun to form expectations about 
the words they commonly hear in their environment and their meanings (Bergel-
son and Swingley 2012). Forming word-like representations appears to change 
how infants process auditory sequences such as those used in the oddball para-
digm (Dehaene-lambertz and Dehaene 1994), allowing infants to more rapidly 
process auditory information when new syllables are consistent with their lingu-
istic knowledge. In one study, 12 and 24-month-old Finnish-speaking infants rec-
ognized an unexpected auditory syllable such as [kɑ] more quickly (as indexed 
by an earlier differential electrophysiological brain response) when it was in the 
context of the familiar word kukka (flower in Finnish) than as an isolated syllable 
(Ylinen et al. 2017), suggesting that infants use linguistic context to form expec-
tations about upcoming syllables based on their knowledge about word forms.  

Infants also begin to develop the ability to use their word knowledge to make 
predictions about their visual environment over the course of their second year 
of life. While there is little direct evidence that infants are able to make visual 
predictions based on the words they are hearing before around two years of age, 
there is intriguing evidence that infants’ cortical processing shows early distinct 
ERP signatures in response to unexpected word-object pairings, similar to the 
N400 response to semantic violations found in adults. By 12 months of age, in-
fants show an early negative event-related potential when viewing images of 
known objects and listening to familiar words (Friedrich and Friederici 2004, 
2005). Differences between familiar words that match versus familiar words that 
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do not match an image emerge between 100–250 ms post auditory stimulus on-
set. Given how rapidly these responses to mismatching words unfold, and the ev-
idence from adults that ERP signatures of this kind may stem from errors in pre-
diction, these ERP signatures may reflect violations of infants’ expectations about 
the words they will hear in the context of a known object. Similar ERP effects 
emerge when exposing infants as young as 3–6 months to violations of newly 
learned word-object associations (Friedrich and Friederici 2011, 2017), suggesting 
that infants are rapidly forming expectations about how a novel word relates to 
the visual world.  

Infants and children form linguistic expectations that they can use to recog-
nize not only words presented in isolation, but also when processing sentences. 
Many key results come from the looking-while-listening paradigm, in which in-
fants view a set of images (usually two, e.g. an image of a ball and an image of a 
shoe), one of which is subsequently labeled (Where is the ball?). The speed and 
accuracy with which children fixate the target image is a measure of children’s 
language processing, particularly their ability to recognize the target noun. Using 
this paradigm, researchers have shown that, around the ages of 2 and 3 children 
can use verb semantics (Mani and Huettig 2012), grammatical gender (Lew-Wil-
liams and Fernald 2007), and even coarticulatory cues (Mahr et al. 2015) to recog-
nize word meanings more quickly. Lew Williams and Fernald (2007) find that 3-
year-old Spanish children shift looking towards the target image faster when the 
grammatical gender of the name of the target image and of the distractor image 
differ (i.e. the gender of the article disambiguates the two images). Mahr et al. 
(2015) showed that infants can use coarticulatory information present in the 
vowel of the word the to more efficiently process a subsequent noun. Including 
coarticulatory information about the upcoming noun leads to faster looking to-
wards the target image as compared to a condition that does not include coartic-
ulatory information. 

These contextual effects in language processing are subject to the question 
raised earlier about whether facilitating effects are due to prediction or to more 
rapid integration of upcoming information. For some types of linguistic cues, 
however, in particular semantic cues, the results are more clear-cut that children 
can predict upcoming language input (Gambi, Pickering and Rabagliati 2016; 
Gambi et al. 2018; Mani and Huettig 2012). Mani and Huettig (2012) show that 2-
year-olds use the meaning of verbs to anticipate which noun they will encounter. 
When hearing a verb such as eat (but not a neutral verb such as see), children 
begin looking toward a picture of a cake (rather than an image of an inedible ob-
ject) even before the noun cake occurs. These predictions do not appear to rely 
merely on associations: Gambi et al. (2016) find that when hearing the verb ride 
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in a sentence such as Pingu will ride the horse, 3–5-year-olds look predictively to 
an image of a probable patient such as horse. However, children do not look to-
ward a picture of a cowboy, which is also strongly associated with the word ride, 
but unlikely to take the patient role in the sentence. Interestingly, the ability to 
predict upcoming nouns from verb semantics relates strongly to vocabulary 
knowledge in 3–10-year-old children (Borovsky, Elman and Fernald 2012; see 
also Mani and Huettig 2012).6 Though most studies in language processing in in-
fants show facilitative, rather than truly anticipatory effects of visual and linguis-
tic cues, the general picture that emerges is that infants use an array of cues to 
form expectations about incoming linguistic input. 

4 Prediction and learning 

4.1 Learning in “bootstrap heaven” 

Infants are actively predicting what will occur in the world around them, in par-
ticular how linguistic signals will unfold over time. But what are these predictions 
for? Is predicting simply a processing strategy adopted “for the moment”, with 
errors in prediction hastily discarded to anticipate the next input? Or is prediction 
a processing principle that is more deeply connected to how a cognitive system 
develops? One of the most intriguing possibilities is that generating predictions 
is integrally connected to learning (Huettig 2015; Rabagliati, Gambi and Pickering 
2016; O’Reilly, Wyatte and Rohrlich 2014).  

On predictive processing accounts, learning is a natural consequence of the 
mechanisms by which we perceive the world (Clark 2015). When we experience 
an unexpected event, the discrepancies between top-down predictions and bot-
tom-up input are fed forward through the processing system, essentially becom-
ing error signals that catalyse learning. Prediction-generating models are revised 
and adjusted in response to these error signals, which changes the kinds of pre-
dictions we will make for future events. In other words, every perceptual event is 
simultaneously a learning event.  

|| 
6 Since these data are correlational, there is an interesting question as to the direction of the 
causal effect here (see also Reuter et al. 2018 for additional evidence with children between 12 and 
24 months of age). Are children with larger vocabularies better able to predict upcoming input? 
Or are children who are better predictors more effective word learners? Or is there some third var-
iable (e.g. some construct such as “general intelligence”) that is the source of the relationship? 
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Viewing prediction error as a learning signal is particularly attractive for de-
velopmental theories because it reframes the developmental question of how in-
fants are able to learn so much over the first years of life. Infants, on this view, 
are “learning in bootstrap heaven” (Clark 2015: 17). This picture of early cognitive 
development stands in clear contrast to a traditional view of infants as passive 
organisms faced with James’s “blooming, buzzing confusion”. Instead, by ac-
tively attempting to predict what will happen next, infants can exploit the dense 
information in their world as a rich source of error signal, which in turn catalyses 
learning. This point is made eloquently by O’Reilly and colleagues (2014): 

[P]redictive forms of learning are particularly compelling because they provide a ubiquitous 
source of learning signals: if you attempt to predict everything that happens next, then 
every single moment is a learning opportunity. This kind of pervasive learning can for ex-
ample explain how an infant seems to magically acquire such a sophisticated understand-
ing of the world, despite their seemingly inert overt behavior … – they are becoming in-
creasingly expert predictors of what they will see next, and as a result, developing increas-
ingly sophisticated internal models of the world. (O’Reilly, Wyatte, and Rohrlich 2014: 3) 

In the following sections, I explore the idea that prediction – in particular re-
sponding to prediction errors – is crucially involved in the learning process. 

4.2 Prediction error and learning 

The idea that prediction error is intimately connected with learning has enjoyed 
broad application in psychology. The key insight that many models grounded in 
prediction share is that prediction error is not only a signal to update expecta-
tions, it is also a guide as to how to update expectations. Prediction error com-
municates information about which expectations to adjust: for instance, by trac-
ing an error backwards through a generative model, a model can adjust the 
specific expectations that contributed to the error. This is a key idea behind the 
training of neural networks, discussed below (Rumelhart, Hinton and Williams 
1986). Prediction error also contains information about how strongly to adjust ex-
pectations, a key idea behind the Rescorla-Wagner model of association learning. 

The Rescorla-Wagner model is one of the most productive applications in 
psychology of the idea that prediction error drives learning. In its basic form, the 
Rescorla-Wagner model provides a rule according to which a learner should ad-
just an association between two stimuli. Crucially, the model updates associa-
tions according to the difference between actual and expected outcomes, the pre-
diction error. Originally proposed as a descriptive model of conditioning in ani-
mals, the model has seen broad application across psychology (Miller, Barnet 
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and Grahame 1995), and has been successfully applied in explaining diverse phe-
nomena in language development, such as how infants learn word meanings 
(Baayen et al. 2016) and inflectional morphology (Ramscar, Dye and McCauley 
2013). Modern reinforcement learning models built on this basic prediction-based 
learning mechanism have been expanded to learning complex structured repre-
sentations, that allow a system to e.g. map a spatial environment or make con-
text-sensitive decisions in a multidimensional task (Niv et al. 2015; Gershman 
2017; Daw 2012). 

In a different modeling tradition, the notion of prediction error as a driver of 
learning has been extensively mined in research on neural networks (McClelland 
et al. 2010; Rumelhart and Todd 1993; McClelland and Rumelhart 1981; Ru-
melhart and McClelland 1986), particularly in models implementing backpropa-
gation of error (Rumelhart et al. 1986). In the backpropagation algorithm, errors 
between model output and target are fed backward through the neural network 
model, with the weights between individual nodes in the network continuously 
adjusted (or “penalized”) according to how much they contributed to the error 
(Hinton 2014; Rumelhart et al. 1986). Greater error means greater adjustment of 
the weights responsible for error, in the service of reducing future error. In other 
words, greater prediction error leads to larger revisions of the underlying model 
governing the system’s predictions. Error in a model’s output is both the signal 
to learn and the guide as to how to update the system.  

While these modeling traditions show the power of prediction-error driven 
learning, to what extent is there support that our brains function in this manner? 
A long line of evidence has documented that prediction errors are encoded in the 
brain (e.g. Schultz and Dickinson 2000; Schultz, Dayan and Montague 1997; 
O’Doherty et al. 2004) and influence reward-seeking behavior (e.g. Pessiglione et 
al. 2006). Recent evidence suggests that prediction error plays a more general role 
in the neural implementation of learning. In one study, participants performed a 
visual-detection task in the presence of auditory distractors (den Ouden et al. 
2009). Unbeknownst to the subjects, some auditory distractors were predictive of 
the presence or absence of the visual stimulus. Across the course of the experi-
ment, the visual primary cortex (V1) showed progressively greater activation to 
unpredicted and progressively less activation to predicted visual stimuli, demon-
strating learning of the dependency between predictive auditory distractors and 
visual targets. Moreover, participants showed greater response in V1 for unex-
pected stimuli even in the absence of a visual stimulus, indicating that the acti-
vations being measured were truly prediction error responses and not simply 
(more or less attenuated) bottom-up visual inputs. Most interestingly, the magni-
tude of prediction error predicted changes in visual-auditory connectivity. This 
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indicates that prediction error not only encodes violations of expectation (i.e. sur-
prise), but also plays a functional role in learning, reshaping connections to 
adapt to ongoing tasks. 

4.3 Patterns from predictions: What recurrent neural 
networks can learn 

An early illustration of the power of learning driven by prediction is Elman’s 
(1990, 1991) recurrent neural network model of sentence processing. Elman set 
out to adapt neural network models to predict outcomes as they unfold over time. 
Elman constructed a simple three-layer neural network model with a deceptively 
simple tweak: he introduced a context layer that copies hidden unit activations 
from the previous learning event. The context layer subsequently provides inputs 
to the hidden units in the next learning event (see figure 10.1). This creates a re-
current processing loop that allows previous representations to influence current 
activations. The model was given a very simple task: given the current word, pre-
dict what word will come next. For this task, the model was fed the model a cor-
pus of two- and three-word sentences with simple subject-verb and subject-verb-
object structure. Although the model was not tasked with discovering syntactic 
structure or semantic relationships between words, the model’s hidden units de-
veloped latent structure that represented complex grammatical and semantic re-
lationships between words – since these prove helpful to the task of predicting 
what word will come next. For instance, the hidden units represented nouns dif-
ferently from verbs, even though words were not tagged with this information. 
The model also represented semantically similar words as more similar to each 
other: for example, inanimate nouns were represented as more similar to each 
other than animate nouns. This latent structure in the hidden units of the model 
emerged simply as a consequence of the model attempting to minimize predic-
tion error on the next word it encountered. The lesson from Elman’s model is that 
relatively complex representations of the kind needed in language processing 
can emerge from a simple mechanism – predicting what word will come next 
(Elman 1990, 1991, 2004, 2009). 
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Fig. 10.1: Schematic representation of a simple recurrent network 
(A) A simple representation of a three-layer recurrent neural network (Elman 1990). (B) The 
same recurrent network “unfolded” in time to illustrate its recurrent structure. At time t, the 
hidden layer receives input both from the input layer at time t and crucially from the hidden 
layer of the previous time step t-1. 

The same logic has been fruitfully extended to show that recurrent neural net-
works can learn non-adjacent dependencies (Cleeremans and McClelland 1991; 
Willits 2013), sequence and event structure (Botvinick and Plaut 2004, 2006), ab-
stract rule-like structure (Willits 2013), semantic categories from child-directed 
speech corpora (Huebner and Willits 2018), as well as perform more complex lan-
guage comprehension and production tasks (Chang, Dell and Bock 2006; Chang 
2002). For instance, Chang and colleagues (2006) developed a model of language 
processing that learned from a far greater set of training sentences than Elman’s 
original model and was subsequently tested on both comprehension and produc-
tion. The model succeeded at developing relatively complex abstract syntactic 
representations. While the architectural constraints underlying the model were 
far more complex than Elman’s original model, the fundamental task of the 
model and the mechanism by which the model learned remained the same. The 
model incrementally predicted upcoming words, and when a prediction deviated 
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from the target word, the weights of the model were updated according to the 
source of the prediction error. 

Recent advances in the architecture of recurrent neural networks have placed 
these models at the forefront of the state-of-the-art in natural language pro-
cessing (LeCun, Bengio and Hinton 2015). Modern recurrent networks are not 
only excellent at learning to predict the next word in a sequence (Mikolov et al. 
2013), but the underlying representations yield structure that can be used to solve 
surprisingly complex tasks. For instance, in machine translation, the hidden 
units learned by a model trained to probabilistically predict upcoming English 
words can subsequently be used to generate a (probabilistic) French translation 
of the English sentence (Cho et al. 2014). Recurrent neural networks can be used 
in a similar fashion to generate image captions by “translating” high-level image 
representations generated by neural networks into phrases (Vinyals et al. 2015). 
Recurrent neural networks are also at the forefront of speech recognition, with 
modern networks converting audio into text with surprising accuracy (Graves 
and Jaitly 2014; Graves, Mohamed and Hinton 2013). 

Some caution is warranted in drawing strong conclusions about predictive 
mechanisms from these successes, since many of these breakthroughs depend on 
specific modeling techniques, e.g. adjustments to the memory structure of the 
model that allow it to learn otherwise difficult long-term dependencies.7 While 
the key idea of predicting an upcoming word in a sequence is preserved, the ar-
chitecture and training methods are much more complex than in Elman’s (1990) 
original simple architecture, and it is still unclear how these architectures relate 
to the cognitive architecture of the mind. More generally, how recurrent neural 
networks actually succeed at diverse tasks once trained – the computations they 
perform – is still something of a black box. However, recent research is beginning 
to investigate the underlying computations performed in recurrent neural net-
works (Sussillo and Barak 2013) and to demonstrate analogs to neural dynamics, 
e.g. in the prefrontal cortex (Mante et al. 2013). Recurrent predictive processing is 
rapidly being recognized not just as a framework for creating surprisingly power-
ful models capable of discovering complex patterns in visual and linguistic data, 
but a promising framework for understanding the architecture of the mind (Hunt 
and Hayden 2017).  

|| 
7 See http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (last accessed June 23, 2018) 
for an accessible explanation – along with excellent visualizations – of some of the key features 
of these architectures. 
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5 Predicting patterns: Prediction and statistical 
learning 

One of the most fruitful discoveries of the past twenty years has been uncovering 
the powerful statistical learning mechanisms that support pattern-learning from 
early infancy (see Aslin 2017, and Saffran and Kirkham 2018 for two recent re-
views; see Romberg and Saffran 2010 for a review focusing on the role of statisti-
cal learning in language development). A seminal finding in statistical learning 
is that infants can use transitional probabilities to learn word boundaries in a 
continuous sequence of spoken syllables (Saffran, Aslin and Newport 1996; 
Aslin, Saffran and Newport 1998). In Saffran et al. (1996), 8-month-old infants 
heard a spoken sequence constructed from four nonsense words presented in 
random order, resulting in a continuous auditory stream, e.g. pabikugolatuda-
ropipabikudaropi… Crucially, the auditory stream contained no acoustic or pro-
sodic cues to word boundaries such as pauses or differences in stress. The only 
cues to word boundaries were the transitional probabilities between syllables 
(see figure 10.2 below): syllables within a word (e.g. pabi) had higher transitional 
probabilities (1.0, i.e. pa was always followed by bi) than syllables between words 
(0.33, i.e. ku was equally likely to be followed by the three beginning syllables go, 
ti or da, the first syllables in the three other words). After a brief exposure to the 
auditory stream, infants discriminated “part-words” (constructed from syllables 
that crossed word boundaries, e.g. kugola) from words (e.g. pabiku), showing that 
infants had learned to identify words within the sequence. 

This study opened the door to a host of other findings showing that statistical 
learning mechanisms operate across a variety of domains, including learning vis-
ual regularities (Fiser and Aslin 2002; Kirkham, Slemmer and Johnson 2002), pre-
dicting actions and events (Baldwin et al. 2008; Endress and Wood 2011; Stahl et 
al. 2014), and learning in social contexts (Tummeltshammer et al. 2014; Wu et al. 
2011). Statistical learning has also often come to be construed in a broad sense to 
describe learners’ prodigious ability to extract statistical patterns from the input 
(e.g. Romberg and Saffran 2010). In this more general sense of sensitivity to sta-
tistical structure in the environment, statistical learning has been proposed as a 
method by which infants can learn many aspects of their language environment, 
including phonological categories (Maye, Werker and Gerken 2002) and learning 
to map words to their referents (Smith and Yu 2008). Moreover, statistical learn-
ing has been argued to aid in uncovering more complex relations such as depen-
dencies between non-adjacent linguistic elements (Gómez 2002; Newport and 
Aslin 2004) and learning more abstract rule-like patterns (Marcus et al. 1999). 
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Fig. 10.2: Illustration of the design of Saffran et al. (1996) 
(A) The formula for computing transitional probabilities. (B) An example of an auditory se-
quence of syllables from the experiment, including the transitional probability between sylla-
bles. The colours are used here only to illustrate the underlying structure of the auditory stimu-
lus stream and do not reflect a difference in auditory cues. (C) Examples of the words and part-
words used at test, along with their statistical structure. 

One question that remains controversial is how statistical learning mechanisms 
operate. In the case of word segmentation, the initial proposal was that partici-
pants compute transitional probabilities between items in a sentence (Aslin 2017; 
Aslin, Saffran and Newport 1998; Saffran, Aslin and Newport 1996). This fits well 
with a prediction-based account of statistical learning, by which learners are de-
veloping probabilistic expectations about upcoming units. These expectations 
track the transitional evidence in the data over the course of exposure to a con-
tinuous stream of syllables. Parsimonious models of sequential pattern learning 
that are grounded in computing transitional probabilities can account for a di-
verse pattern of both behavioural and neuropsychological results (Meyniel, Ma-
heu and Dehaene 2016). Other proposals suggest that learners instead extract 
larger chunks of syllables (French, Addyman and Mareschal 2011; Perruchet and 
Vinter 1998; see Frank, Goldwater, Griffiths and Tenenbaum 2010 for a compari-
son of different models) and focus on the role of memory structure in statistical 
learning (Thiessen 2017). 

Regardless of the outcome of these specific debates, there is diverse evidence 
that statistical learning in general may be grounded in our ability to generate 
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probabilistic expectations. For instance, adults use statistical learning to antici-
pate future events and elements in sequences (Misyak, Christiansen and Tomblin 
2010; Dale, Duran and Morehead 2012). Moreover, recent evidence from intracra-
nial recordings of neural assemblies suggests that adults generate forward-look-
ing probabilistic predictions about likely upcoming syllables when processing 
known words (Leonard et al. 2015). Another intriguing line of evidence suggests 
that statistical learning helps to sharpen our predictions about expected inputs 
(see also Saffran and Kirkham 2018), with predictability helping to enhance the 
representation of items involved in a sequence (see e.g. Otsuka and Saiki 2016). 
For example, more predictable items in a visual sequence become easier to visu-
ally detect, suggesting that forming expectations about upcoming elements in a 
pattern has beneficial consequences for the representation of predictable ele-
ments (Barakat, Seitz and Shams 2013). 

Amid these models, an important goal for future research will be to tease out 
the degree to which infants’ statistical learning is grounded in developing prob-
abilistic expectations – do infants anticipate upcoming units during statistical 
learning, and how does this relate to learning? One way to approach this question 
is to test predictions that follow from explanations grounded in prediction-based 
probability computation. One prediction of such models is that past transitional 
probabilities should be preserved such that they can influence later learning: for 
example, if the transitional probabilities between syllables at an early time point 
T1 change during a later learning experience at time point T2, the transitional 
probabilities from T1 should influence the degree to which infant learners adapt 
to the transitional probabilities at T2.8  

A second prediction is that the global context within which a pattern is em-
bedded can differentially constrain expectations about upcoming elements in a 
sequence. For instance, do infants develop higher-level expectations about the 
predictability of different contexts? In the statistical word segmentation task from 
Saffran et al. (1996), infants could encounter words with high within-word tran-
sitional probabilities in two different contexts: a context with little regularity 
based on transitional probabilities (i.e. a highly noisy syllable transition context) 
or a context with a more regular pattern for transitional probabilities (i.e. a more 
predictable syllable transition context). The degree to which infants make predic-
tions that use transitional probabilities may depend on whether transitional 
probabilities yield useful predictions in the larger context, not just their 

|| 
8 One caveat here is that learners are exquisitely attuned to changes in context and are able to 
rapidly update their expectations to contextual changes (Qian, Jaeger, and Aslin 2016). Thus, 
care would need to be taken to maintain the continuity of the learning context from T1 to T2. 
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informativity within a particular word. This fits well with the notion that the par-
ticular information that enters into a learner’s prediction is highly context-sensi-
tive and may crucially depend on the expected utility of that information for mak-
ing accurate predictions in the future (see Kuperberg and Jaeger 2016). 

6 Language development theory in light of 
prediction 

While prediction offers a unified perspective from which to view language devel-
opment, it is important to recognize that it does not adjudicate many of the cen-
tral theoretical debates in the field, in particular the classic dialogue between na-
tivist and empiricist/constructivist theories regarding the origin of linguistic 
knowledge and the role of experience in language development (see e.g. Am-
bridge and Lieven 2011 for an overview over theoretical debates in different areas 
of language). Are the foundations of linguistic knowledge present from birth, or 
does linguistic knowledge emerge from language experience over the course of 
development? The prediction-based approaches sketched here appear to be 
largely agnostic about this question. Crucially, prediction-based theories may 
vary in how they explain the source of initial expectations that constrain predic-
tion, the types of linguistic elements over which probabilistic expectations are 
computed and how expectations are updated, leaving room to interpret these 
mechanisms in terms of domain-general or domain-specific constraints. How-
ever, prediction offers a domain-general computational principle operating 
across language learning mechanisms. 

The prediction-based framework may advance theoretical discussion by fo-
cusing on learning and inference over statistical patterns. Prediction-based ap-
proaches establish a deep continuity between language processing and learning 
(Chang, Dell and Bock 2006; Kuperberg and Jaeger 2016), helping to connect our 
understanding of how learners accumulate and exploit statistical knowledge 
about linguistic patterns (see e.g. MacWhinney and Bates 1987; Seidenberg and 
MacDonald 1999). A key aspect of prediction-based theories is their emphasis on 
the ubiquity of learning. Every moment of processing linguistic input is simulta-
neously providing information updating infants’ probabilistic expectations 
about future language patterns they may encounter. One consequence of this 
view is that it reframes debates about the “impoverished” nature of leaners’ lan-
guage input (Laurence and Margolis 2001; Chomsky 1965) by demonstrating the 
vast amounts of probabilistic inferences that can be made from the language 
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input a child experiences (e.g. Huebner and Willits 2018). The focus of the debate 
can thus be moved to the problem of constraining possible probabilistic infer-
ences from the rich language data available to a prediction-driven learner (see 
also, e.g. Clark and Lappin 2011). 

Prediction may also help to address specific problems in the language devel-
opment literature, such as the no-negative-evidence problem (Bowerman 1988). 
Children sometimes overgeneralize in their use of lexical items, e.g. using an in-
transitive verb transitively in phrases such as don’t giggle me. Children rarely – if 
ever – receive direct feedback that these usages are ungrammatical (negative evi-
dence), presenting a puzzle as to how children successfully “unlearn” these un-
grammatical forms. Prediction suggests that children might in some sense create 
negative evidence themselves during learning. If children are creating probabilis-
tic expectations about linguistic structures (e.g. that giggle can be used transi-
tively), but these expectations are violated (giggle is only used intransitively, and 
tickle is encountered in transitive situations), then children could update their ex-
pectations based on the internally generated prediction error (negative evidence). 
Chomsky himself recognized the potential importance of what he described as “in-
direct negative evidence” (see also Rabagliati et al. 2016 for discussion): 

[A] not unreasonable acquisition system can be devised with the operative principle that if 
certain structures or rules fail to be exemplified in relatively simple expressions, where they 
would expect to be found, then a (possibly marked) option is selected excluding them in the 
grammar, so that a kind of “negative evidence” can be available even without corrections, 
adverse reactions, etc. (Chomsky 1981: 9; emphasis mine) 

Since we are constantly making predictions about upcoming input, we are gen-
erating, in some sense, our own evidence as we develop more refined linguistic 
expectations. 

7 Conclusion 

The task faced by young learners of language is daunting. Syllable after syllable 
unfolds at a rapid pace, with ambiguity at virtually all levels of processing. Pre-
diction offers a framework for understanding how infants succeed at this task by 
exploiting patterns in their language environment to develop expectations about 
upcoming auditory signals and the meanings they communicate. There are many 
questions left unanswered in prediction-based theories in their current form – 
simply recognizing the predictive nature of infants’ early language learning can-
not explain language development in all of its complexity. However, the 
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prediction framework offers a fruitful way of unifying many of the central insights 
in the field and opens up new avenues for exploring how infants come to uncover 
the patterns in language. 
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