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Language is clearly an important source of knowledge 
about the world. It is largely because of language that 
our knowledge far exceeds our personal experiences. 
Language allows us to learn about past events, helps 
to plan for the future, and is indispensable for creating 
the stories that make up human culture. Language is 
also at the center of much of our formal education. 
Given its seeming importance, it is therefore surprising 
that the role of linguistic input has figured minimally 
in accounts of how humans acquire and structure 
semantic knowledge (Barsalou, 1999; Tulving, 1972).1 
In explaining the origins and development of semantic 
knowledge, the more empiricist cognitive scientists 
have tended to focus on the role of perception and sen-
sorimotor grounding (Prinz, 2002; Rogers & McClelland, 
2004). Such work acknowledges that we might ordinar-
ily learn many facts about water, such as its chemical 
structure, from language, but the more important con-
ceptual “cores” are learned from our interactions with 
the world. We don’t need language to learn that water 
is wet. On the more rationalist side, theorists have 

instead stressed the importance of innate conceptual 
knowledge and abstract reasoning (Bedny & Saxe, 
2012; Quilty-Dunn et al., 2022). In artificial intelligence 
(AI), mastery of natural language has been a long-
standing goal: A system that could understand natural 
language could be controlled by being spoken to. The 
open-endedness of language also meant that its suc-
cessful use by a machine could be used as an intelli-
gence metric, as in Turing’s famous imitation game. The 
use of language was thus viewed as a problem to be 
solved by a sufficiently intelligent system rather than a 
way of making a system appropriately intelligent.

But what if this thinking is backward? Could lan-
guage be a key ingredient in creating human-like intel-
ligence in the first place? Striking evidence for this 
possibility comes from what happens when artificial 
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Abstract
We use language to communicate our thoughts. But is language merely the expression of thoughts, which are 
themselves produced by other, nonlinguistic parts of our minds? Or does language play a more transformative role in 
human cognition, allowing us to have thoughts that we otherwise could (or would) not have? Recent developments in 
artificial intelligence (AI) and cognitive science have reinvigorated this old question. We argue that language may hold 
the key to the emergence of both more general AI systems and central aspects of human intelligence. We highlight 
two related properties of language that make it such a powerful tool for developing domain-general abilities. First, 
language offers compact representations that make it easier to represent and reason about many abstract concepts 
(e.g., exact numerosity). Second, these compressed representations are the iterated output of collective minds. In 
learning a language, we learn a treasure trove of culturally evolved abstractions. Taken together, these properties 
mean that a sufficiently powerful learning system exposed to language—whether biological or artificial—learns a 
compressed model of the world, reverse engineering many of the conceptual and causal structures that support human 
(and human-like) thought.
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neural networks are exposed to large amounts of  
language. Large language models (LLMs) such as  
ChatGPT, Claude, and Gemini are neural network trans-
formers trained through the self-supervised prediction 
of upcoming text.2 Given a context (a chunk of text), 
the model makes predictions of what is likely to follow, 
adjusting its weights to minimize the error between its 
guess and what actually happens next. To learn that 
“Good” is frequently followed by “morning” does not 
require learning much beyond simple transition prob-
abilities. But when a sufficiently large model is trained 
on a sufficiently large corpus, three surprising things 
happen.

First, the models learn language. Although it was 
possible a few years ago to deny that LLMs “really” learn 
language (e.g., Dentella et  al., 2023), it is no longer 
possible to reliably distinguish language produced  
by people and state-of-the-art LLMs (Hu et al., 2024; 
Sadasivan et al., 2025).3 A key innovation that led to 
this progress has been the development of the multi-
head “attention” mechanism that allows the models to 
incorporate context into the internal representation of 
the linguistic prompt in a more powerful way than 
previously possible.4 These models are generalized  
pattern learners. They learn language despite lacking 
specialized language-learning machinery of the sort that 
has long been argued to be necessary for any system 
to learn language (e.g., Lidz & Gagliardi, 2015). The 
same transformer architecture that powers modern  
language models can be put to use when performing 
image classification (Dosovitskiy et  al., 2021) and to 
simulate chick development (Wood et al., 2024).

Second, in the course of learning to produce human-
like language, LLMs learn some of the very things that 
have been considered to be prerequisites to language 
learning (Piantadosi, 2024). For example, we know that 
human language understanding requires a heavy dose 
of pragmatic inference (Heintz & Scott-Phillips, 2023). 
Learning and using language also seems to require a 
system to be systematic: Understanding “Mary loves 
John” implies that the system can understand “John 
loves Mary.” But before being trained on language, LLMs 
know nothing of pragmatic inference and are hardly 
systematic. These abilities emerge in LLMs with expo-
sure to language (Hu et al., 2023; Lepori et al., 2023).

Third, and perhaps most surprising, training these 
general-purpose networks on large amounts of natural 
language has enabled LLMs to perform a huge range 
of practical downstream tasks, ranging from summariz-
ing and editing texts to diagnosing patients with appar-
ently superhuman accuracy (Goh et  al., 2024).5 The 
rapid uptake of LLMs across a wide swath of society 
speaks to the practical usefulness of these systems.

The wide-ranging abilities of LLMs raise two ques-
tions. First, is it a coincidence that these advances have 
come from using natural language as the main training 
data, or is there something special about language?  
Second, if language provides such effective training for 
artificial neural networks, might language input be more 
instrumental to human intelligence than many cognitive 
scientists have tended to assume (for recent philosophi-
cal treatments, see Chalmers, 2024; Clatterbuck, 2024; 
Rothschild, 2025)?

The most direct way of answering the first question 
would require systematically comparing neural net-
works trained on language to those trained on only 
nonlinguistic data. If language is not necessary, it 
should be possible for nonlinguistic models to achieve 
the same performance (on nonlinguistic versions of 
tasks) as their language-trained counterparts. Nonlin-
guistic input should be sufficient (indeed in most cases 
more effective than language) for giving rise to the 
kinds of intelligence we find in nonhuman animals. 
After all, other animals manage to get by without the 
benefit of language. But when it comes to the types of 
intelligence that are more uniquely human—including 
a sophisticated theory of mind, relational and analogical 
reasoning, and the ability to learn a wide set of non-
survival-related skills—we predict that such nonlinguis-
tic AI systems would struggle.

According to some recent work in cognitive neurosci-
ence, the answer to the second question is that no mat-
ter the usefulness of language for training AI models, 
its function in human cognition is highly circumscribed. 
For example, Fedorenko and colleagues have shown 
that explicit language tasks such as hearing or reading 
sentences activates a “language network” (which 
includes the left inferior frontal and middle frontal gyri 
and anterior temporal lobe). This language network is 
not activated by nonverbal tasks such as numerical cog-
nition, understanding actions, and tasks probing theory 
of mind (Fedorenko, Ivanova, & Regev, 2024).

On the basis of this dissociation between brain net-
works involved in overtly linguistic tasks and in other 
cognitive tasks, Fedorenko, Piantadosi, and Gibson 
(2024) argued that the role of language is strictly com-
municative and that thought is independent of lan-
guage. But although this work has been useful in 
helping us understand the neural substrates of language 
processing, it conflicts with a range of findings from 
cognitive science.

Just as manipulating linguistic experience is the best 
way to understand the role of language in artificial 
systems, we can ask if manipulating linguistic experi-
ence in humans affects human cognition. Although we 
cannot deliberately deprive people of language, we can 
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glean valuable insights from cases in which people do 
not receive typical language input or from individuals 
who suffer from language impairments. We can also 
investigate typical development and study the associa-
tions between children’s emerging language abilities to 
their cognition. Last, we can experimentally manipulate 
the availability of language during a task and measure 
the effects of this manipulation on behavior.

These approaches, when taken together, provide 
converging evidence that language plays a transforma-
tive role in human cognition. For example, children 
who are born deaf and are not exposed to a conven-
tional sign language struggle with a range of cognitive 
tasks such as theory of mind (Gagne & Coppola, 2017) 
and spatial reasoning (Gentner et al., 2013). People who 
suffer language impairments in adulthood (e.g., stroke-
induced aphasia) show impairments in putatively “non-
verbal” (fluid) reasoning (Baldo et  al., 2015) and in 
tasks requiring selectively attending to a particular 
dimension (e.g., appreciating that cherries and bricks 
are similar by virtue of their color; Koemeda-Lutz et al., 
1987)—an ability that underlies much of abstract rea-
soning. Interestingly, they do not show pronounced 
deficits in theory of mind (Siegal & Varley, 2006), sug-
gesting that the role of language may be to inform the 
initial development of theory of mind (after all, the 
major way we come to know what others are thinking 
is by having them tell us). Experimental studies that 
manipulate language demonstrate its causal role in 
human cognition. For example, holding nonlinguistic 
experience constant, named categories, and categories 
consisting of more nameable parts are easier to learn 
(e.g., Zettersten & Lupyan, 2020); hearing a word  
activates more categorical mental representations  
(Edmiston & Lupyan, 2015), which is important for 
making inferences and for enabling compositional 
thought. Conversely, interfering with language impairs 
people’s ability to learn rules and attend to specific 
dimensions (Lupyan, 2009), mirroring some of the 
impairments observed in aphasia.

Neural Dissociations Do Not Imply 
Lack of Causality

How can we square these findings with apparent neural 
dissociations between linguistic and nonlinguistic pro-
cesses? One answer is that many aspects of language 
such as phonological and syntactic processing are 
highly specialized. As we gain linguistic expertise, these 
processes become modularized and neurally dissocia-
ble. But as the evidence above suggests, such emerging 
modularity does not mean that “nonlinguistic” cognition 
is independent of language.

To take one example of such interaction, although 
visual processing is by no means a linguistic process, 
language actively modulates and constrains it. Language 
activates both the primary visual cortex (Seydell- 
Greenwald et al., 2023) and higher level visual regions 
(Ardila et  al., 2015) and modulates basic visual pro-
cesses. For example, a simple word can make otherwise 
invisible objects visible (Lupyan & Ward, 2013). The 
addition of language input also vastly improves the 
match between visual representations in people and 
those learned by artificial neural networks trained on 
images (Wang et al., 2023; see also Bi, 2021). Despite 
being dissociable, language informs and shapes visual 
processing. These causal links do not imply that the 
medium of thinking or perceiving is linguistic. Rather, 
they suggest that forming useful internal models (both 
developmentally and when executing a task) benefits 
from learning and using the abstractions provided to 
us by natural language.

Investigations of how LLMs learn to process language 
(e.g., noun–verb agreement) are revealing the emer-
gence of specialized circuits (Tigges et al., 2024). But 
this does not license distinguishing “formal” linguistic 
competence, which underlies LLMs’ ability to produce 
fluent coherent language, from “functional” linguistic 
competence, which involves using language for down-
stream tasks (Mahowald et al., 2024). It is indeed useful 
to distinguish linguistic tasks such as noun-verb agree-
ment from various functional downstream tasks such a 
medical diagnosis. LLMs can do both, but the mecha-
nisms are likely quite different because the computa-
tional needs of the tasks are different. Yet it would 
clearly be a mistake to conclude from such dissociations 
that the ability of LLMs to diagnose patients is indepen-
dent of language. It is of interest that the performance 
of many (although importantly not all) downstream 
tasks can be improved not by augmenting training with 
nonlinguistic materials but simply by having models 
use internal language—analogous to inner speech—
before producing a response (Chen et al., 2025).

Why Does Language Have These Effects?

Why does language have these effects on people, and 
how can exposure to natural language, no matter its 
scale, enable LLMs to perform so many different types 
of cognitive tasks? One reason is that language provides 
a set of abstractions encoded into its vocabulary. 
Although it may seem that words simply reflect natural 
categories (the “joints of nature”), vocabularies are in 
fact products of collective intelligence. Very few if any 
of us are capable of inventing number words to denote 
cardinalities, but once these words exist, we readily 
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learn them in the course of learning the rest of lan-
guage. Absent number words, we struggle to represent 
exact numerosities even when living in a numerate 
culture (Spaepen et al., 2011). The vocabulary of every 
language consists of thousands of such prediscovered 
abstractions that are much easier to learn than to rein-
vent. Vocabularies and larger verbal constructions can 
thus be viewed as highly generative compression 
schemes for capturing the human umwelt (see also 
Clatterbuck & Gentry, 2025; Rothschild, 2025).

When we expose sufficiently powerful statistical 
learning systems (such as transformers) to language 
and force them to get good at predicting the next word, 
they come to learn not only the statistical patterns of 
language but also the generative model of the latent 
structure that produced the language, that is, the world 
through human eyes, including perceptual relationships 
(Marjieh et al., 2024; Wang et al., in press) and causal 
links (Kıcıman et al., 2024) thought to be unlearnable 
from passive observation, much less from passive 
observation of language (Sloman, 2005). To paraphrase 
a recent social media post from @gracekind.net: What 
does ChatGPT do? It predicts the next token. What does 
it do to predict the next token? Whatever it takes (see 
also Aguera y Arcas, 2025).

Human and Machine Intelligence as 
Collective, Language-Based Intelligence

In trying to understand the astonishing intellectual 
achievements of our species, it has been common to 
appeal to the computational power of individual minds. 
Recognizing that language is both the product of our 
collective intelligence and also its shaper encourages 
a more humble view: The power of human intelligence 
has less to do with our individual mental firepower and 
more to do with the scaffolding provided by language 
(and other aspects of culture; Henrich, 2015). The pres-
ence of certain words in a vocabulary ensures that all 
the members of the language community learn the cat-
egories these words denote. Learning these categories 
paves the way for their creative recombination. From 
this point of view, language is not just a communication 
medium; its abstractions help us form internal models 
we use to cognize the world.

Adopting this perspective makes the successes of arti-
ficial neural networks trained on language less surpris-
ing: The open-ended nature of language means that it 
can be used to convey everything from how we feel, to 
recipes, to scientific findings. Reducing prediction error 
across these varied domains turns out to be a highly 
effective means for learning the latent structure of these 
data: the human umwelt. Despite the vast differences 

between LLMs and human minds, language appears to 
help both. As our creations, the intelligence of LLMs 
depends on the cognitive labor of countless human 
minds. So too does our own intelligence.
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Notes

1. Exceptions include neo-Whorfian work in the tradition of 
Melissa Bowerman and Stephen Levinson; work in develop-
mental psychology, including work by Sandy Waxman and 
Dedre Gentner; and work by Paul Harris et al. on learning from 
testimony.
2. We are deliberately simplifying the training procedure for the 
purposes of the current article. The bulk of training is indeed 
self-supervised prediction of text. However, the ability of LLMs 
to perform the many downstream tasks they are capable of 
requires a relatively small amount of supervised training to pro-
vide illustrations of, for example, what it means to summarize 
a document. Importantly, the effectiveness of this supervised 
training depends on having a sufficiently large base model 
trained through self-supervised language prediction.
3. The impossibility of distinguishing whether a particular text 
was written by a person or an LLM does not entail that human 
and LLM-produced language are identical in aggregate. For 
example, there is compelling evidence that language produced 
by LLMs is more uniform compared with language produced by 
people (Sourati et al., 2025).
4. We put the term “attention” in quotes in this sentence to high-
light that it is misleading to think of this mechanism in terms 
of human attention. It is, more accurately, a form of adaptive 
kernel smoothing.
5. Although it is difficult to compare data efficiency in an apples-
to-apples way, it is certainly the case that LLMs are exposed to 
orders of magnitude more language than any person. Compared 
with biological systems, these models also require vast amounts 
of power to operate. These differences should temper the urge 
to draw overly strict analogies between artificial and biological 
neural networks.
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