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Abstract
The ability to rapidly recognize words and link them to referents is central to children’s early language development. This 
ability, often called word recognition in the developmental literature, is typically studied in the looking-while-listening 
paradigm, which measures infants’ fixation on a target object (vs. a distractor) after hearing a target label. We present a 
large-scale, open database of infant and toddler eye-tracking data from looking-while-listening tasks. The goal of this effort 
is to address theoretical and methodological challenges in measuring vocabulary development. We first present how we cre-
ated the database, its features and structure, and associated tools for processing and accessing infant eye-tracking datasets. 
Using these tools, we then work through two illustrative examples to show how researchers can use Peekbank to interrogate 
theoretical and methodological questions about children’s developing word recognition ability.

Keywords Word recognition · Eye-tracking · Vocabulary development · Looking-while-listening · Visual world paradigm · 
Lexical processing

Across their first years of life, children learn words at an 
accelerating pace (Frank, Braginsky, Yurovsky, & March-
man, 2021). While many children will only produce their 
first word at around 1 year of age, most children show signs 
of understanding many common nouns (e.g., mommy) and 
phrases (e.g., Let’s go bye-bye!) much earlier in devel-
opment (Bergelson & Swingley 2012, 2013; Tincoff & 

Jusczyk, 1999). Although early word understanding is a 
critical element of first language learning, the processes 
involved are less directly apparent in children’s behaviors 
and are less accessible to observation than developments in 
speech production (Fernald, Zangl, Portillo, & Marchman, 
2008; Hirsh-Pasek, Cauley, Golinkoff, & Gordon, 1987). 
To understand a spoken word, children must process the 
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incoming auditory signal and link that signal to relevant 
meanings—a process often referred to as word recognition. 
One of the primary means of measuring word recognition 
in young infants is using eye-tracking techniques that gauge 
where children look in response to linguistic stimuli (Fer-
nald, Zangl, Portillo, & Marchman, 2008). The logic of these 
methods is that if, upon hearing a word, a child preferentially 
looks at a target stimulus rather than a distractor, the child 
is able to recognize the word and activate its meaning dur-
ing real-time language processing. Measuring early word 
recognition offers insight into children’s early word repre-
sentations: children’s speed of response (i.e., moving their 
eyes; turning their heads) to the unfolding speech signal can 
reveal children’s level of comprehension (Bergelson, 2020; 
Fernald, Pinto, Swingley, Weinberg, & McRoberts, 1998). 
Word recognition skills are also thought to build a founda-
tion for children’s subsequent language development. Past 
research has found that early word recognition efficiency is 
predictive of later linguistic and general cognitive outcomes 
(Bleses, Makransky, Dale, Højen, & Ari, 2016; Marchman 
et al., 2018).

While word recognition is a central part of children’s 
language development, mapping the trajectory of word rec-
ognition skills has remained elusive. Studies investigating 
children’s word recognition are typically limited in scope 
to experiments in individual labs involving small samples 
tested on a handful of items. The limitations of single data-
sets makes it difficult to understand developmental changes 
in children’s word knowledge at a broad scale.

One way to overcome this challenge is to compile exist-
ing datasets into a large-scale database in order to expand 
the scope of research questions that can be asked about the 
development of word recognition abilities. This strategy cap-
italizes on the fact that the looking-while-listening paradigm 
is widely used, and vast amounts of data have been collected 
across labs on infants’ word recognition over the past 35 
years (Golinkoff, Ma, Song, & Hirsh-Pasek, 2013). Such 
datasets have largely remained isolated from one another, 
but once combined, they have the potential to offer general 
insights into lexical development. There has been a long 
history of efforts to aggregate data in a unified format in 
developmental and cognitive psychology, generating pro-
jects that have often had a tremendous impact on the field. 
Prominent examples in language research include the Eng-
lish Lexicon Project, which provides an open repository of 
psycholinguistic data for over 80,000 English words and 
non-words in order to support large-scale investigations of 
lexical processing (Balota et al., 2007); the Child Language 
Data Exchange System (CHILDES), which has played an 
instrumental role in the study of early language environ-
ments by systematizing and aggregating data from natural-
istic child–caregiver language interactions (MacWhinney, 
2000); and WordBank, which aggregated data from the 

MacArthur-Bates Communicative Development Inven-
tory, a parent-report measure of child vocabulary, to deliver 
new insights into cross-linguistic patterns and variability in 
vocabulary development (Frank, Braginsky, Yurovsky, & 
Marchman, 2017b, 2021). In this paper, we introduce Peek-
bank, an open database of infant and toddler eye-tracking 
data aimed at facilitating the study of developmental changes 
in children’s word recognition.

Measuring word recognition: The 
looking‑while‑listening paradigm

Word recognition is traditionally studied in the looking-
while-listening paradigm (Fernald, Zangl, Portillo, & 
Marchman, 2008, alternatively referred to as the inter-
modal preferential looking procedure, Hirsh-Pasek, Cauley, 
Golinkoff, & Gordon, 1987). In these studies, infants listen 
to a sentence prompting a specific referent (e.g., Look at 
the dog!) while viewing two images on the screen (e.g., an 
image of a dog—the target image—and an image of a bird—
the distractor image). Infants’ word recognition is evaluated 
by how quickly and accurately they fixate on the target 
image after hearing its label. Past research has used this 
basic method to study a wide range of questions in language 
development. For example, the looking-while-listening para-
digm has been used to investigate early noun knowledge, 
phonological representations of words, prediction during 
language processing, and individual differences in language 
development (Bergelson & Swingley, 2012; Golinkoff, Ma, 
Song, & Hirsh-Pasek, 2013; Lew-Williams & Fernald, 2007; 
Marchman et al., 2018; Swingley & Aslin, 2002).

While this research has been fruitful in advancing 
understanding of early word knowledge, fundamental 
questions remain. One central question is how to accu-
rately capture developmental change in the speed and 
accuracy of word recognition. There is ample evidence 
demonstrating that infants become faster and more accu-
rate in word recognition over the first few years of life 
(e.g., Fernald et al., 1998). However, precisely measur-
ing developmental increases in the speed and accuracy 
of word recognition remains challenging due to the dif-
ficulty of distinguishing developmental changes in word-
recognition skill from changes in knowledge of specific 
words. This problem is particularly thorny in studies with 
young children, since the number of items that can be 
tested within a single session is limited and items must be 
selected in an age-appropriate manner (Peter et al., 2019). 
More broadly, key differences in the design choices (e.g., 
how distractor items are selected) and analytic decisions 
(e.g., how the analysis window is defined) between stud-
ies can obscure developmental change if not appropriately 
taken into account.
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One approach to addressing these challenges is to conduct 
meta-analyses aggregating effects across studies while test-
ing for heterogeneity due to researcher choices (Bergmann 
et al., 2018; Lewis et al., 2016). However, meta-analyses 
typically lack the granularity to estimate participant-level 
and item-level variation or to model behavior beyond coarse-
grained effect size estimates. An alternative way to approach 
this challenge is to aggregate trial-level data from smaller 
studies measuring word recognition with a wide range of 
items and design choices into a large-scale dataset that 
can be analyzed using a unified modeling approach. A suf-
ficiently large dataset would allow researchers to estimate 
developmental change in word recognition speed and accu-
racy while generalizing across changes related to specific 
words or the design features of particular studies.

A related open theoretical question is understanding 
changes in children’s word recognition at the level of indi-
vidual items. Looking-while-listening studies have been 
limited in their ability to assess the development of chil-
dren's processing of specific words. One limitation is that 
studies typically test only a small number of trials for each 
item, reducing power to precisely measure the development 
of word-specific accuracy (DeBolt, Rhemtulla, & Oakes, 
2020). A second limitation is that target stimuli are often 
yoked with a narrow set of distractor stimuli (i.e., a child 
sees a target with only one or two distractor stimuli over 
the course of an experiment), leaving ambiguous whether 
accurate looking to a particular target word can be attrib-
uted to children’s recognition of the target word or their 
knowledge about the distractor. Aggregating across many 
looking-while-listening studies has the potential to meet 
these challenges by increasing the number of observations 
for specific items at different ages and by increasing the size 
of the inventory of distractor stimuli that co-occur with each 
target.

Replicability and reproducibility

A core challenge facing psychology in general, and the 
study of infant development in particular, are threats to the 
replicability and reproducibility of core empirical results 
(Frank et al., 2017a; Nosek et al., 2022). In infant research, 
many studies are not adequately powered to detect the main 
effects of interest (Bergmann et al., 2018). This issue is com-
pounded by low reliability in infant measures, often due to 
limits on the number of trials that can be collected from an 
individual infant in an experimental session (Byers-Hein-
lein, Bergmann, & Savalei, 2021). One hurdle to improving 
power in infant research is that it can be difficult to develop 
a priori estimates of effect sizes and how specific design 
decisions (e.g., the number of test trials) will impact power 
and reliability. Large-scale databases of infant behavior can 

aid researchers in their decision-making by allowing them 
to directly test how different design decisions affect power 
and reliability. For example, if a researcher is interested in 
understanding how the number of test trials could impact the 
power and reliability of their looking-while-listening design, 
a large-scale infant eye-tracking database would allow them 
to simulate possible outcomes across a range of test trials, 
providing the basis for data-driven design decisions.

In addition to threats to replicability, the field of infant 
development also faces concerns about analytic reproduc-
ibility—the ability for researchers to arrive at the same 
analytic conclusion reported in the original research article, 
given the same dataset. A recent estimate based on studies 
published in a prominent cognitive science journal suggests 
that analyses can remain difficult to reproduce, even when 
data are made available to other research teams (Hardwicke 
et al., 2018). Aggregating data in centralized databases can 
aid in improving reproducibility in several ways. First, build-
ing a large-scale database requires defining a standardized 
data specification. Recent examples include the brain 
imaging data structure (BIDS), an effort to 
specify a unified data format for neuroimaging experiments 
(Gorgolewski et al., 2016), and the data formats associated 
with ChildProject, for managing long-form at-home 
language recordings (Gautheron, Rochat, & Cristia, 2021). 
Defining a data standard—in this case, for infant eye-track-
ing experiments—supports reproducibility by guaranteeing 
that critical information will be available in openly-shared 
data and by making it easier for different research teams 
to understand the data structure. Second, open databases 
make it easy for researchers to generate open and reproduc-
ible analytic pipelines, both for individual studies and for 
analyses aggregating across datasets. Creating open analytic 
pipelines across many datasets also serves a pedagogical 
purpose, providing teaching examples illustrating how to 
implement analytic techniques used in influential studies 
and how to conduct reproducible analyses with infant eye-
tracking data.

Peekbank: An open database 
of developmental eye‑tracking studies

What all of these open challenges share is that they are dif-
ficult to address at the scale of a single research lab or in a 
single study. To address this challenge, we developed Peek-
bank, a flexible and reproducible interface to an open data-
base of developmental eye-tracking studies. The Peekbank 
project (a) collects a large set of eye-tracking datasets on 
children’s word recognition, (b) introduces a data format and 
processing tools for standardizing eye-tracking data across 
heterogeneous data sources, and (c) provides an interface for 
accessing and analyzing the database. In the current paper, 
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we introduce the key components of the project and give 
an overview of the existing database. We then provide two 
worked examples of how researchers can use Peekbank. In 
the first example, we examine a classic result in the word-
recognition literature, and in the second, we aggregate data 
across studies to investigate developmental trends in the rec-
ognition of individual words.

Design and technical approach

Database framework

One of the main challenges in compiling a large-scale eye-
tracking database is the lack of a shared data format: both 
labs and individual experiments can record their results in a 
wide range of formats. For example, different experiments 
encode trial-level and participant-level information in many 
different ways. Therefore, we have developed a common tab-
ular format to support analyses of all studies simultaneously.

As illustrated in Fig. 1, the Peekbank framework con-
sists of four main components: (1) a set of tools to convert 

eye-tracking datasets into a unified format, (2) a relational 
database populated with data in this unified format, (3) a set 
of tools to retrieve data from this database, and (4) a web 
app (using the Shiny framework) for visualizing the data. 
These components are supported by three packages. The 
peekds package (for the R language, R Core Team, 2021) 
helps researchers convert existing datasets to use the stand-
ardized format of the database. The peekbank module 
(Python) creates a database with the relational schema 
and populates it with the standardized datasets produced 
by peekds. The database is served through MySQL, an 
industry standard relational database server, which may be 
accessed by a variety of programming languages, and can 
be hosted on one machine and accessed by many others over 
the Internet. As is common in relational databases, records 
of similar types (e.g., participants, trials, experiments, coded 
looks at each timepoint) are grouped into tables, and records 
of various types are linked through numeric identifiers. The 
peekbankr package (R) provides an application program-
ming interface, or API, that offers high-level abstractions for 
accessing the tabular data stored in Peekbank. Most users 
will access data through this final package, in which case the 
details of data formatting, processing, and the specifics of 
connecting to the database are abstracted away from the user.

Database schema

The Peekbank database contains two major types of data: 
(1) metadata regarding experiments, participants, and trials, 
and (2) time course looking data, detailing where a child is 
looking on the screen at a given point in time (Fig. 2).

Metadata

Metadata can be separated into four parts: (1) participant-level 
information (e.g., demographics), (2) experiment-level informa-
tion (e.g., the type of eye-tracker used to collect the data), (3) 
session information (e.g., a participant’s age for a specific exper-
imental session), and (4) trial information (e.g., which images or 
videos were presented onscreen, and paired with which audio).

Participant information All information about individual 
participants in Peekbank is completely de-identified under 
United States law, containing none of the key identifiers 
listed under the “Safe Harbor” standard for data de-identifi-
cation. All participant-level linkages are made using anony-
mous participant identifiers.

Invariant information about individuals who participate 
in one or more studies (e.g., a participant’s first language) is 
recorded in the subjects table, while the administra-
tions table contains information about each individual ses-
sion in a given study (see Session information, below). This 
division allows Peekbank to gracefully handle longitudinal 

Fig. 1  Overview of the Peekbank data ecosystem. Peekbank tools are 
highlighted in green. * indicates R packages introduced in this work
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designs: a single participant can complete multiple sessions 
and thus be associated with multiple administrations.

Participant-level data includes all participants who have 
experiment data. In general, we include as many participants 
as possible in the database and leave it to end-users to apply 
the appropriate exclusion criteria for their analysis.

Experiment information The datasets table includes 
information about the lab conducting the study and the rel-
evant publications to cite regarding the data. In most cases, 
a dataset corresponds to a single study.

Information about the experimental design is split across 
the trial_types and stimuli tables. The trial_
types table encodes information about each trial in the 

design of the experiment,1 including the target stimulus and 
location (left vs. right), the distractor stimulus and location, 
and the point of disambiguation for that trial. If a dataset 
used automatic eye-tracking rather than manual coding, each 
trial type is additionally linked to a set of area of interest 
(x, y) coordinates, encoded in the aoi_region_sets 
table. The trial_types table links trial types to the 
aoi_region_sets table and the trials table. Each 

Fig. 2  The Peekbank schema. Each darker rectangle represents a table in the relational database. Arrows indicate linked records across tables. 
AOIs are areas of interest in an eye-tracking experiment, in this case information about the position of target and distractor stimuli on the screen

1 We note that the term trial is ambiguous and could be used to refer 
to both a particular combination of stimuli seen by many participants 
and a participant seeing that particular combination at a particular 
point in the experiment. We track the former in the trial_types 
table and the latter in the trials table.
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trial type record links to two records in the stimuli table, 
identified by the distractor_id and the target_id 
fields.

Each record in the stimuli table is a (word, image) 
pair. In most experiments, there is a one-to-one mapping 
between images and labels (e.g., each time an image of a 
dog appears it is referred to as dog). For studies in which 
there are multiple potential labels per image (e.g., dog and 
chien are both used to refer to an image of a dog), images 
can have multiple rows in the stimuli table with unique 
labels. This structure is useful for studies on synonymy or 
using multiple languages. It is also possible for an image to 
be associated with a row with no label, if the image appears 
solely as a distractor (and thus its label is ambiguous). For 
studies in which the same label refers to multiple images 
(e.g., the word dog refers to an image of a dalmatian and 
a poodle), the same label can have multiple rows in the 
stimuli table with unique images.

Session information The administrations  table 
includes information about the participant or experiment that 
may change between sessions of the same study, even for the 
same participant. This includes the age of the participant, 
the coding method (eye-tracking vs. manual-coding), and 
the properties of the monitor that was used. For participant 
age, we include the fields lab_age and lab_age_units 
to record how the original lab encoded age, as well as an 
additional field, age, to encode age in a standardized format 
across datasets, using standardized months as the common 
unit of measurement (see the Peekbank codebook for details 
on how ages are converted into months).

Trial information The trials table includes information 
about a specific participant completing a specific instance of 
a trial type. This table links each record in the time course 
looking data (described below) to the trial type and specifies 
the order of the trials seen by a specific participant.

Time course data

Raw looking data is a series of looks to areas of interest 
(AOIs), such as looks to the left or right of the screen, or 
to (x, y) coordinates on the experiment screen, linked to 
points in time. For data generated by eye-trackers, we typi-
cally have (x, y) coordinates at each time point, which we 
encode in the xy_timepoints table. These looks are also 
recoded into AOIs according to the AOI coordinates in the 
aoi_region_sets table using the add_aois() func-
tion in peekds, and encoded in the aoi_timepoints 
table. For manually coded data, we typically have a series 
of AOIs (i.e., looks to the left vs. right of the screen), but 
lack information about exact gaze positions on-screen; in 
these cases, the AOIs are recoded into the categories in the 

Peekbank schema (target, distractor, other, and missing) 
and encoded in the aoi_timepoints table; however, 
these datasets do not have any corresponding data in the 
xy_timepoints table.

Typically, timepoints in the xy_timepoints table 
and aoi_timepoints table need to be regularized to 
center each trial’s time around the point of disambigua-
tion—such that 0 is the time of target word onset in the 
trial (i.e., the beginning of dog in Can you find the dog?). 
We re-centered timing information to the onset of the tar-
get label to facilitate comparison of target label processing 
across all datasets.2 If time values run throughout the exper-
iment rather than resetting to zero at the beginning of each 
trial, rezero_times() is used to reset the time at each 
trial. After this, each trial’s times are centered around the 
point of disambiguation using normalize_times(). 
When these steps are complete, the time course is ready 
for resampling.

To facilitate time course analysis and visualization across 
datasets, time course data must be resampled to a uniform 
sampling rate (i.e., such that every trial in every dataset 
has observations at the same time points). All data in the 
database is resampled to 40 Hz (observations every 25 ms), 
which represents a compromise between retaining fine-
grained timing information from datasets with dense sam-
pling rates (maximum sampling rate among current datasets: 
500 Hz) while minimizing the possibility of introducing 
artifacts via resampling for datasets with lower sampling 
rates (minimum sampling rate for current datasets: 30 Hz). 
Further, 25 ms is a mathematically convenient interval for 
ensuring consistent resampling; we found that using 33.333 
ms (30 Hz) as our interval simply introduced a large num-
ber of technical complexities. The resampling operation is 
accomplished using the resample_times() function. 
During the resampling process, we interpolate using con-
stant interpolation, selecting for each interpolated timepoint 
the looking location for the earlier-observed time point in the 
original data for both aoi_timepoints and xy_time-
points data. Compared to linear interpolation (see e.g., 
Wass, Smith, & Johnson, 2013), which fills segments of 
missing or unobserved time points by interpolating between 
the observed locations of timepoints at the beginning and 
end of the interpolated segment, constant interpolation 

2 While information preceding the onset of the target label in some 
datasets such as co-articulation cues ((Mahr, McMillan, Saffran, Ellis 
Weismer, & Edwards, 2015) or adjectives (Fernald, Marchman, & 
Weisleder, 2013) can in principle disambiguate the target referent, we 
use a standardized point of disambiguation based on the onset of the 
label for the target referent. Onset times for other potentially disam-
biguating information (such as adjectives) can typically be recovered 
from the raw data provided on OSF.
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has the advantage that it is more conservative, in the sense 
that it does not introduce new look locations beyond those 
measured in the original data. One possible application of 
our new dataset is investigating the consequences of other 
interpolation functions for data analysis.

Processing, validation, and ingestion

Although Peekbank provides a common data format, the 
key hurdle to populating the database is converting existing 
datasets to this format. Each dataset is imported via a custom 
import script, which documents the process of conversion. 
Often various decisions must be made in this import pro-
cess (for example, how to characterize a particular trial type 
within the options available in the Peekbank schema); these 
scripts provide a reproducible record of this decision-making 
process. Our data import repository (available on GitHub at 
https:// github. com/ langc og/ peekb ank- data- import) contains 
all of these scripts, links to internal documentation on data 
import, and a set of generic import templates for different 
formats.

Many of the specific operations involved in importing 
a dataset can be abstracted across datasets. The peekds 
package offers a library of these functions. Once the data 
have been extracted in a tabular form, the package also 
offers a validation function that checks whether all tables 
have the required fields and data types expected by the 

database. In an effort to double-check the data quality and 
to make sure that no errors are made in the importing script, 
we also typically perform a visual check of the import pro-
cess, creating a time course plot to replicate the results in 
the paper that first presented each dataset. Once this plot 
has been created and checked for consistency and all tables 
pass our validation functions, the processed dataset is ready 
for reprocessing into the database using the peekbank 
library. This library applies additional data checks, and 
adds the data to the MySQL database using the Django 
web framework.

To date, the import process has been carried out by the 
Peekbank team using data offered by other research teams. 
Data contributors are also welcome to provide import 
scripts to facilitate contribution. However, creating these 
scripts requires familiarity with both R scripting and the 
specific Peekbank schema, and writing an import script 
can be somewhat time-consuming in practice. To sup-
port future data contributions, import script templates and 
examples are available for both manually coded datasets 
and automatic eye-tracking datasets for research teams to 
adapt to their data. These import templates walk research-
ers through each step of data processing using example 
datasets from Peekbank and include explanations of key 
decision points, examples of how to use various helper 
functions available in peekds, and further details about 
the database schema.

Table 1  Overview of the datasets in the current database

Study citation Dataset name N Mean age 
(months)

Age range 
(months)

Method Language

Adams et al. (2018) adams_marchman_2018 69 17.1 13–20 manual coding English
Byers-Heinlein et al. (2017) byers-heinlein_2017 48 20.1 19–21 eye-tracking English, French
Casillas et al. (2017) casillas_tseltal_2015 23 31.3 9–48 manual coding Tseltal
Fernald et al. (2013) fmw_2013 80 20.0 17–26 manual coding English
Frank et al. (2016) frank_tablet_2016 69 35.5 12–60 eye-tracking English
Garrison et al. (2020) garrison_bergelson_2020 35 14.5 12–18 eye-tracking English
Hurtado et al. (2007) xsectional_2007 49 23.8 15–37 manual coding Spanish
Hurtado et al. (2008) hurtado_2008 76 21.0 17–27 manual coding Spanish
Mahr et al. (2015) mahr_coartic 29 20.8 18–24 eye-tracking English
Perry and Saffran (2017) perry_cowpig 45 20.5 19–22 manual coding English
Pomper and Saffran (2016) pomper_saffran_2016 60 44.3 41–47 manual coding English
Pomper and Saffran (2019) pomper_salientme 44 40.1 38–43 manual coding English
Potter and Lew-Williams (2022) potter_canine 36 23.8 21–27 manual coding English
Potter et al. (2019) potter_remix 44 22.6 18–29 manual coding Spanish, English
Ronfard et al. (2021) ronfard_2021 40 20.0 18–24 manual coding English
Swingley and Aslin (2002) swingley_aslin_2002 50 15.1 14–16 manual coding English
Weisleder and Fernald (2013) weisleder_stl 29 21.6 18–27 manual coding Spanish
Yurovsky and Frank (2017) attword_processed 288 25.5 13–59 eye-tracking English
Yurovsky et al. (2013) reflook_socword 435 33.6 12–70 eye-tracking English
Yurovsky et al. (unpublished) reflook_v4 45 34.2 11–60 eye-tracking English

https://github.com/langcog/peekbank-data-import
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Current data sources

The database currently includes 20 looking-while-listening 
datasets comprising N= 1594 total participants (Table 1). 
The current data represents a convenience sample of datasets 
that were (a) datasets collected by or available to Peekbank 
team members, (b) made available to Peekbank after infor-
mal inquiry or (c) datasets that were openly available. Most 
datasets (14 out of 20 total) consist of data from monolin-
gual native English speakers. They span a wide age spectrum 
with participants ranging from 9 to 70 months of age, and 
are balanced in terms of children’s assigned sex (47.30% 
female; 50.40% male; 2.30% unreported). The datasets vary 
across a number of design-related dimensions, and include 
studies using manually coded video recordings and auto-
mated eye-tracking methods (e.g., Tobii, EyeLink) to meas-
ure gaze behavior. All studies tested familiar items, but the 
database also includes 5 datasets that tested novel pseudo-
words in addition to familiar words. Users interested in a 
subset of the data (e.g., only trials testing familiar words) 
can filter out unwanted trials using columns available in the 
schema (e.g., using the column stimulus_novelty in 
the stimuli table).

Versioning and reproducibility

The content of Peekbank will change as we add additional 
datasets and revise previous ones. To facilitate reproduc-
ibility of analyses, we use a versioning system by which suc-
cessive releases are assigned a name reflecting the year and 
version, e.g., 2022.1. By default, users will interact with 
the most recent version of the database available, though 
the peekbankr API allows researchers to run analyses 
against any previous version of the database. For users with 
intensive use-cases, each version of the database may be 
downloaded as a compressed .sql file and installed on a local 
MySQL server.

Peekbank allows for fully reproducible analyses using our 
source data, but the goal is not to reproduce precisely the 
analyses—or even the datasets—in the publications whose 
data we archive. Because of our emphasis on a standardized 
data importing and formatting pipeline, there may be minor 
discrepancies in the time course data that we archive com-
pared with those reported in original publications. Further, 
we archive all of the data that are provided to us—including 
participants that might have been excluded in the original 
studies, if these data are available—rather than attempting to 
reproduce specific exclusion criteria. We hope that Peekbank 
can be used as a basis for comparing different exclusion 
and filtering criteria—as such, an inclusive policy regarding 
importing all available data helps us provide a broad base of 
data for investigating these decisions.

Interfacing with Peekbank

Peekbankr

The peekbankr API offers a way for users to access data 
from the database and flexibly analyze it in R. The majority 
of API calls simply allow users to download tables (or sub-
sets of tables) from the database. In particular, the package 
offers the following functions:

• connect_to_peekbank() opens a connection with 
the Peekbank database to allow tables to be downloaded 
with the following functions

• get_datasets() gives each dataset name and its 
citation information

• get_subjects() gives information about persistent 
participant identifiers (e.g., native languages, sex)

• get_administrations() gives information about 
specific experimental administrations (e.g., participant 
age, monitor size, gaze coding method)

• get_stimuli() gives information about word–image 
pairings that appeared in experiments

• get_trial_types() gives information about pair-
ings of stimuli that appeared in the experiment (e.g., 
point of disambiguation, target and distractor stimuli, 
condition, language)

• get_trials() gives the trial orderings for each 
administration, linking trial types to the trial IDs used in 
time course data

• get_aoi_region_sets() gives coordinate regions 
for each area of interest (AOI) linked to trial type IDs

• get_xy_timepoints() gives time course data for 
each participant’s looking behavior in each trial, as (x, y) 
coordinates on the experiment monitor

• get_aoi_timepoints() gives time course data for 
each participant’s looking behavior in each trial, coded 
into areas of interest

Once users have downloaded tables, they can be merged 
using join commands via their linked IDs. A set of stand-
ard merges are shown below in the “Peekbank in action” 
section; these allow the common use-case of examining time 
course data and metadata jointly.

Because of the size of the XY and AOI data tables, down-
loading data across multiple studies can be time-consum-
ing. Many of the most common analyses of the Peekbank 
data require downloading the aoi_timepoints table, 
thus we have put substantial work into optimizing transfer 
times. In particular, connect_to_peekbank offers a 
data compression option, and get_aoi_timepoints 
by default downloads time courses via a compressed (run-
length encoded) representation, which is then uncompressed 
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on the client side. More information about these options 
(including how to modify them) can be found in the package 
documentation.

Shiny app

One goal of the Peekbank project is to allow a wide range 
of users to easily explore and learn from the database. We 
therefore have created an interactive web application—
peekbank-shiny—that allows users to quickly and eas-
ily create informative visualizations of individual datasets 
and aggregated data (https:// peekb ank- shiny. com/). peek-
bank-shiny is built using Shiny, a software package for 
creating web apps for data exploration with R, as well as the 
peekbankr package. All code for the Shiny app is publicly 
available (https:// github. com/ langc og/ peekb ank- shiny). The 
Shiny app allows users to create commonly used visualiza-
tions of looking-while-listening data, based on data from the 
Peekbank database. Specifically, users can visualize:

1. the time course of looking data in a profile plot depicting 
infant target looking across trial time

2. overall accuracy, defined as the proportion target look-
ing within a specified analysis window

3. reaction times in response to a target label, defined 
as how quickly participants shift fixation to the target 
image on trials in which they were fixating on the dis-
tractor image at onset of the target label

4. an onset-contingent plot, which shows the time course of 
participant looking as a function of their look location 
at the onset of the target label

Users are given various customization options for each of 
these visualizations, e.g., choosing which datasets to include 
in the plots, controlling the age range of participants, split-
ting the visualizations by age bins, and controlling the analy-
sis window for time course analyses. Plots are then updated 
in real time to reflect users’ customization choices. A screen-
shot of the app is shown in Fig. 3. The Shiny app thus allows 
users to quickly inspect basic properties of Peekbank’s data-
sets and create reproducible visualizations without incurring 
any of the technical overhead required to access the database 
through R.

OSF site

In addition to the Peekbank database proper, all data is 
openly available on the Peekbank OSF webpage (https:// 
osf. io/ pr6wu/). The OSF site also includes the original raw 
data (both time series data and metadata, such as trial lists 
and participant logs) that was obtained for each study and 
subsequently processed into the standardized Peekbank for-
mat. Where available, the OSF page also includes additional 

information about the stimuli used in each dataset, including 
in some instances the original stimulus sets (e.g., image and 
audio files).

Peekbank in action

In the following section, we provide examples of how users 
can access and analyze the data in Peekbank. First, we pro-
vide an overview of some general properties of the datasets 
in the database. We then demonstrate two potential use-cases 
for Peekbank data. In each case, we provide sample code 
to demonstrate the ease of doing simple analyses using the 
database. Our first example shows how we can investigate 
the findings of a classic study. This type of investigation can 
be a very useful exercise for teaching students about best 
practices for data analysis (e.g., Hardwicke et al., 2018) and 
also provides an easy way to explore looking-while-listen-
ing time course data in a standardized format. Our second 
example shows an exploration of developmental changes in 
the recognition of particular words. Besides its theoretical 
interest (which we will explore more fully in subsequent 
work), this type of analysis could in principle be used for 
optimizing the stimuli for new experiments, especially as the 
Peekbank dataset grows and gains coverage over a greater 
number of items. All analyses are conducted using R [Ver-
sion 4.1.1; R Core Team (2021)].3

General descriptives

One of the values of the uniform data format we use in Peek-
bank is the ease of providing cross-dataset descriptions that 
can give an overview of some of the general patterns found 
in our data. A first broad question is about the degree of 
accuracy in word recognition found across studies. In gen-
eral, participants demonstrated robust, above-chance word 
recognition in each dataset (chance = 0.5 due to the two-
alternative forced-choice design of looking-while-listen-
ing trials). Table 2 shows the average proportion of target 

3 We, furthermore, used the R-packages dplyr [Version 1.0.7; Wick-
ham, François, Henry, and Müller (2021)], forcats [Version 0.5.1; 
Wickham (2021a)], ggplot2 [Version 3.3.5; Wickham (2016)], ggth-
emes [Version 4.2.4; Arnold (2021)], here [Version 1.0.1; Müller 
(2020)], papaja [Version 0.1.0.9997; Aust and Barth (2020)], peek-
bankr [Version 0.1.1.9002; Braginsky, MacDonald, and Frank 2021], 
purrr [Version 0.3.4; Henry and Wickham (2020)], readr [Version 
2.0.1; Wickham and Hester (2021)], stringr [Version 1.4.0; Wickham 
(2019)], tibble [Version 3.1.4; Müller and Wickham (2021)], tidyr 
[Version 1.1.3; Wickham (2021b)], tidyverse [Version 1.3.1; Wick-
ham et  al., (2019)], tinylabels (Barth, 2021), viridis [Version 0.6.1; 
Garnier et  al., (2021a)], viridisLite [Version 0.4.0; Garnier et  al., 
(2021a)], and xtable [Version 1.8.4; Dahl, Scott, Roosen, Magnusson, 
and Swinton 2019].

https://peekbank-shiny.com/
https://github.com/langcog/peekbank-shiny
https://osf.io/pr6wu/
https://osf.io/pr6wu/
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looking within a standard critical window of 367–2000 
ms after the onset of the label for each dataset (Swingley 
and Aslin, 2002). Proportion target looking was generally 
higher for familiar words (M = 0.66, 95% CI = [0.65, 0.67], 
n = 1543) than for novel words learned during the experi-
ment (M = 0.59, 95% CI = [0.58, 0.61], n = 822).

A second question of interest is about the variability 
across items (i.e., target labels) within specific studies. Some 
studies use a smaller set of items (e.g., eight nouns, Adams 
et al., 2018) while others use dozens of different items (e.g., 
Garrison, Baudet, Breitfeld, Aberman, & Bergelson, 2020). 
Figure 4 gives an overview of the variability in propor-
tion looking to the target item for individual words in each 

dataset. Although all datasets show a gradual rise in aver-
age proportion target looking over chance performance, the 
number of unique target labels and their associated accuracy 
vary widely across datasets.

Investigating prior findings: Swingley and Aslin 
(2002)

Swingley and Aslin (2002) investigated the specificity of 
14–16-month-olds’ word representations using the look-
ing-while-listening paradigm, asking whether recognition 
would be slower and less accurate for mispronunciations, 
e.g., opal (mispronunciation) instead of apple (correct 

Fig. 3  Screenshot of the Peekbank Shiny app, which shows a variety of standard analysis plots as a function of user-selected datasets, words, age 
ranges, and analysis windows. Shown here are mean reaction time and proportion target looking over time by age group for two selected datasets
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Table 2  Average proportion target looking in each dataset

Study citation Unique items Prop. target 95% CI

Adams et al., (2018) 8 0.65 [0.63, 0.67]
Byers-Heinlein et al. (2017) 6 0.55 [0.52, 0.58]
Casillas et al. (2017) 30 0.59 [0.54, 0.63]
Fernald et al., (2013) 12 0.65 [0.63, 0.67]
Frank et al. (2016) 24 0.64 [0.6, 0.68]
Garrison et al., (2020) 87 0.60 [0.56, 0.64]
Hurtado et al., (2007) 8 0.59 [0.55, 0.63]
Hurtado et al., (2008) 12 0.61 [0.59, 0.63]
Mahr et al., (2015) 10 0.71 [0.68, 0.74]
Perry and Saffran (2017) 12 0.61 [0.58, 0.63]
Pomper and Saffran (2016) 40 0.77 [0.75, 0.8]
Pomper and Saffran (2019) 16 0.74 [0.72, 0.75]
Potter and Lew-Williams (2022) 16 0.65 [0.61, 0.68]
Potter et al. (2019) 8 0.63 [0.58, 0.67]
Ronfard et al., (2021) 8 0.69 [0.65, 0.73]
Swingley and Aslin (2002) 22 0.57 [0.55, 0.59]
Weisleder and Fernald (2013) 12 0.63 [0.6, 0.66]
Yurovsky and Frank (2017) 6 0.63 [0.62, 0.65]
Yurovsky et al. (2013) 6 0.61 [0.6, 0.63]
Yurovsky et al., (unpublished) 10 0.61 [0.57, 0.65]

Fig. 4  Item-level variability in proportion target looking within each 
dataset (chance = 0.5). Time is centered on the onset of the target 
label (vertical line). Colored lines represent specific target labels. 

Black lines represent smoothed average fits based on a general addi-
tive model using cubic splines
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pronunciation).4 In this short vignette, we show how easily 
the data in Peekbank can be used to visualize this result. 
Our goal here is not to provide a precise analytical repro-
duction of the analyses reported in the original paper, but 
rather to demonstrate the use of the Peekbank framework 
to analyze datasets of this type. In particular, because 
Peekbank uses a uniform data import standard, it is likely 
that there will be minor numerical discrepancies between 
analyses on Peekbank data and analyses that use another 
processing pipeline.

We begin by retrieving the relevant tables from the 
database, aoi_timepoints, administrations, 
trial_types, and trials. As discussed above, each 
of these can be downloaded using a simple API call through 
peekbankr, which returns dataframes that include ID 
fields. These ID fields allow for easy joining of the data 
into a single dataframe containing all of the information 
necessary for the analysis.

As the code above shows, once the data are joined, con-
dition information for each timepoint is present and so we 
can easily filter out filler trials and set up the conditions for 
further analysis.

The final step in our analysis is to create a summary data-
frame using dplyr commands. We first group the data by 
timestep, participant, and condition and compute the pro-
portion looking at the correct image. We then summarize 
again, averaging across participants, computing both means 

and 95% confidence intervals (via the approximation of 1.96 
times the standard error of the mean). The resulting data-
frame can be used for visualization of the time course of 
looking.

Figure 5 shows the average time course of looking for 
the two conditions, as produced by the code above. Looks 
after the correctly pronounced noun appeared both faster 
(deviating from chance earlier) and more accurate (show-
ing a higher asymptote). Overall, this example demonstrates 
the ability to produce this visualization in just a few lines 
of code.

Item analyses

A second use-case for Peekbank is to examine item-level 
variation in word recognition. Individual datasets rarely 
have enough statistical power to show reliable develop-
mental differences within items. To illustrate the power of 
aggregating data across multiple datasets, we select the four 
words with the most data available across studies and ages 
(apple, book, dog, and frog) and show average recognition 
trajectories.

Our first step is to collect and join the data from the 
relevant tables including timepoint data, trial and stimu-
lus data, and administration data (for participant ages). We 
join these into a single dataframe for easy manipulation; 
this dataframe is a common starting point for analyses of 
item-level data.
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Fig. 5  Proportion looking at the correct referent by time from the 
point of disambiguation (the onset of the target noun) based on data 
from Swingley and Aslin (2002) imported into the Peekbank data-
base. Colors show the two pronunciation conditions; points give 
means and ranges show 95% confidence intervals. The dotted line 
shows the point of disambiguation and the dashed line shows chance 
performance

4 The original paper investigated both close (e.g., opple, /apl/) and 
distant (e.g., opal, /opl/) mispronunciations. For simplicity, here we 
combine both mispronunciation conditions since the close vs. distant 
mispronunciation manipulation showed no effect in the original paper.
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Next, we select a set of four target words (chosen based 
on having more than 100 children contributing data for 
each word across several 1-year age groups). We create age 
groups, aggregate, and compute timepoint-by-timepoint con-
fidence intervals using the z approximation.

Finally, we plot the data as time courses split by age. 
Our plotting code is shown below (with styling commands 
removed for clarity). Figure 6 shows the resulting plot, 
with time courses for each of three (rather coarse) age bins. 
Although some baseline effects are visible across items, we 
still see clear and consistent increases in looking to the tar-
get, with the increase appearing earlier and in many cases 
asymptoting at a higher level for older children.

This simple averaging approach is a proof-of-concept to 
demonstrate some of the potential of the Peekbank dataset. 
An eye-movement trajectory on an individual trial reflects 
myriad factors, including the age and ability of the child, 
the target and distractor stimuli on that trial, the position of 
the trial within the experiment, and the general parameters 
of the experiment (for example, stimulus timing, eye-tracker 
type and calibration, etc.). Although we often neglect these 
statistically in the analysis of individual experiments—for 
example, averaging across items and trial orders—they may 
lead to imprecision when we average across multiple stud-
ies in Peekbank. For example, studies with older children 
may use more difficult items or faster trial timing, leading to 

the impression that children’s abilities overall increase more 
slowly than they in fact do. Even in our example in Fig. 6, we 
see hints of this confounding—for example, the low baseline 
looks to apple may be an artifact of an attractive distractor 
being paired with this item in one or two studies. In future 
work, we hope to introduce model-based analytic methods 
that use mixed effects regression to factor out study-level 
and individual-level variance in order to recover develop-
mental effects more appropriately (see e.g., Zettersten et al., 
(2021) for a prototype of such an analysis).

Discussion

Theoretical progress in understanding child development 
requires rich datasets, but collecting child data is expen-
sive, difficult, and time-intensive. Recent years have seen a 
growing effort to build open source tools and pool research 
efforts to meet the challenge of building a cumulative devel-
opmental science (Bergmann et al., 2018; Frank, Braginsky, 
Yurovsky, & Marchman, 2017b; Sanchez et al., 2019; The 
ManyBabies Consortium 2020). The Peekbank project 
expands on these efforts by building an infrastructure for 
aggregating eye-tracking data across studies, with a specific 
focus on the looking-while-listening paradigm. This paper 
presents an overview of the structure of the database, shows 
how users can access the database, and demonstrates how 
it can be used both to investigate prior experiments and to 
synthesize data across studies.

The current database has a number of limitations, particu-
larly in the number and diversity of datasets it contains. With 
20 datasets currently available in the database, idiosyncrasies 
of particular designs and condition manipulations still have 
a substantial influence on the results of particular analyses, 
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Fig. 6  Time course plot for four well-represented target items in the 
Peekbank dataset, split by three age groups. Each line represents chil-
dren’s average looking to the target image after the onset of the target 
label (dashed vertical line). Error bars represent 95% CIs
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as discussed above in our item analysis example. Expanding 
the set of distinct datasets will allow us to increase the num-
ber of datasets that contain specific items, leading to more 
robust generalizations across the many sources of variation 
that are confounded within studies (e.g., item set, participant 
age range, and specific experimental parameters). A critical 
next step will be the development of analytic models that 
take this structure into account in making generalizations 
across datasets.

A second limitation stems from the fact that the database 
represents a convenience sample of data readily available to 
the Peekbank team, which leads the database to be relatively 
homogeneous in a number of key respects. First, the datasets 
primarily come from labs that share similar theoretical per-
spectives and implement the looking-while-listening method 
in similar ways. The current database is also limited by the 
relatively homogeneous background of its participants, both 
with respect to language (almost entirely monolingual native 
English speakers) and cultural background (Henrich, Heine, 
& Norenzayan, 2010; Muthukrishna et al., 2020). Increasing 
the diversity of lab sources, participant backgrounds, and 
languages will expand the scope of the generalizations we 
can form about child word recognition, while also providing 
new opportunities for describing cross-lab, cross-cultural, 
and cross-linguistic variation.

Towards the goal of expanding our database, we invite 
researchers to contribute their data. On the Peekbank website, 
we provide technical documentation for potential contribu-
tors. Although we anticipate being involved in most new data 
imports, as discussed above, our import process is transpar-
ently documented and the repository contains examples for 
most commonly used eye-trackers. Contributing data to an 
open repository also can raise questions about participant 
privacy. Potential contributors should consult with their local 
institutional review boards for guidance on any challenges, 
but we do not foresee obstacles because of the de-identified 
nature of the data. Under United States regulation, all data 
contributed to Peekbank are considered de-identified and 
hence not considered “human subjects data”; hence, insti-
tutional review boards should not regulate this contribution 
process. Under the European Union’s Generalized Data Pro-
tection Regulation (GDPR), labs may need to take special 
care to provide a separate set of participant identifiers that 
can never be re-linked to their own internal records.

While the current database is focused on studies of word 
recognition, the tools and infrastructure developed in the 
project can in principle be used to accommodate any eye-
tracking paradigm, opening up new avenues for insights into 
cognitive development. Gaze behavior has been at the core 
of many key advances in our understanding of infant cogni-
tion (Aslin 2007; Baillargeon, Spelke, & Wasserman, 1985; 
Bergelson and Swingley 2012; Fantz 1963; Liu, Ullman, 
Tenenbaum, & Spelke, 2017; Quinn, Eimas, & Rosenkrantz, 

1993). Aggregating large datasets of infant looking behavior 
in a single, openly accessible format promises to bring a fuller 
picture of infant cognitive development into view.
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